The New Capital of Lightning

Imagine being awoken late one night by the near constant glow of lightning overhead—often flickering silently but occasionally rumbling deeply with a strike nearby. Then it happens the same time the next night—and the next, and the next, sometimes lasting for many hours at a time.
Now imagine the nocturnal fireworks happening nearly 300 days per year.
Welcome to Lake Maracaibo, Venezuela.
Based on a scientific paper just released by the Bulletin of the American Meteorological Society (BAMS), the Lake Maracaibo region is the newly crowned lightning capital of the world, taking the throne from a celebrated thunderstorm-prone region of Africa.
Lake Maracaibo, the largest lake in South America, is already well known for its lightning. Boats take tourists onto the water to watch the storms, and the flag of the region—the State of Zulia—features a lightning bolt in honor of the lake’s prolific displays.200px-Flag_of_Zulia_State.svg
Nonetheless, Africa’s Congo Basin had previously been identified by scientists as the world’s lightning hotspot. It stayed that way for several years until the new BAMS article (available online) recalculated rankings based on a new, high-resolution dataset of satellite observations of the lightning flash-rate density.
Lake Maracaibo’s pattern of convergent wind flow–mountain–valley, lake, and sea breezes–occurs over warm lake waters nearly year-round and contributes to nocturnal thunderstorm development 297 days per year on average, with a peak in September. These thunderstorms are very localized and their persistent development anchored in one location accounts for the high flash-rate density. While practically the whole lake is averaging 50 flashes per year, only a small portion qualifies as the world leading hotspot, with more than 232 flashes per square kilometer per year (including cloud-to-ground and cloud-to-cloud lightning).
The BAMS article, “Where are the Lightning Hotspots on Earth?” by Rachel I. Albrecht, Steven J. Goodman, Dennis E. Buechler, Richard J. Blakeslee, and Hugh J. Christian, is derived from 16 years of observations by the Lightning Imaging Sensor aboard the now defunct NASA Tropical Rainfall Measurement Mission satellite.
The team—representing the University of Maryland, Universidade de São Paulo (Brazil), NOAA, NASA, and the University of Alabama in Huntsville—cites several factors for the new lightning champion, including its unique geography and climatology. Storms mostly form during the nighttime hours, after the tropical heating of the day allows warm Caribbean air to mix with colder Andes Mountain air. According to the article, “Nocturnal thunderstorms over Lake Maracaibo are so frequent that their lightning activity was used as a lighthouse by Caribbean navigators in colonial times.”

lightning hot spots

The authors noted that previous studies, using the same satellite capabilities, missed the localized peak at Lake Maracaibo for several reasons. Coarser resolution was one problem (the new study partitions the lake into 20 times more sectors than earlier studies), but so were filtering of high-density outbursts of lightning and calculations made to compensate for limited samples of sparse lightning areas. Where the previous studies were aimed at getting the first useful global overviews, the new study is calibrated to identify hotspots.
Located near the border of the Congo and Rwanda, the now second-ranked Kahuzi-Biéga National Park in Kabare has its own mountainous geography that allows five different locations in the region to rank in the top 10 for lightning flash-rate density. Previous research had shown that the Congo basin boasted the largest flash rate per thunderstorm, and the region still has the world’s largest average flash rate density for any particular part of the day. It averages 5.5 flashes per hour at about 5:30 p.m. local time within a 1° latitude x 1° longitude box. That rate is nearly matched by Lake Maracaibo averaging more than 5.4 flashes per hour at about 3 a.m., when nighttime winds descending the mountain valleys converge over the ever-warm lake waters.
Both of the top two hotspots have lengthy lightning “seasons” but neither had a peak spell matching the 90 flashes per day in early August in the 1° x 1° region of Majagual, Colombia.
Before satellite observations were available, scientists estimated that the whole Earth at any one time experienced about 100 flashes per second. Satellite evidence has reduced that estimate to about 44 to 46 flashes per second, which means Earth experiences nearly 1.4 billion lightning flashes per year. The rate is 20% higher during Northern Hemisphere summer. This variation is in part due to the larger amount of land north of the equator, which lends itself to the surface heating that fuels thunderstorms.
The new BAMS study confirms previous findings showing that lightning activity tends to happen at night in areas closer to mountain ranges and/or coasts but continental-wide lightning activity peaks during the afternoons. And yet the new king of lightning is over water and peaks at night.
The new list of the world’s top 10 lightning flash-rate density hotspots (shown below) includes no sites from North America. Four locations, in Guatemala, Cuba, and Haiti, had more than 100 flashes per square km per year (led by 117 in Patulul, Guatemala). The most lightning prone U.S. location, ranked 122nd globally, was in the Everglades not far from Ft. Myers, Florida, with 79 flashes per square km per year.

World rank

Flash-rate density

 

Location

1

232.52

Lake Maracaibo, Venezuela

2

205.31

Kabare, Dem. Rep. of Congo

3

176.71

Kampene, Dem. Rep. of Congo

4

172.29

Caceres, Colombia

5

143.21

Sake, Dem. Rep. of Congo

6

143.11

Dagar, Pakistan

7

138.61

El Tarra, Colombia

8

129.58

Nguti, Cameroon

9

129.50

Butembo, Dem. Rep. of Congo

10

127.52

Boende, Dem. Rep. of Congo

Flash-rate density indicates the average number of times lightning flashes each year over an area 1 square kilometer in size.
 

Milestones for the AMS Education Program

diversity project 2

In a milestone year for the now 25-year-old AMS Education Program, one of the proudest achievements was the successful completion of the five-year AMS Climate Studies Diversity Project. This NSF-funded initiative introduced and enhanced geoscience and/or sustainability teaching at nearly 100 minority-serving institutions (MSIs) since 2011.
The recent AMS Annual Meeting in New Orleans was the final event in the project; it included a Sunday workshop bringing together 18 faculty from minority-serving institutions who had attended the project’s May 2015 workshop on implementing the AMS Climate Studies course. The faculty not only attend the workshop; they also presented at the subsequent Education Symposium of the Annual Meeting.
Overall in the Climate Studies Diversity Project, AMS was able to partner with Second Nature, a nonprofit working toward societal sustainability through a network of colleges and universities, to recruit 101 faculty to attend Climate Studies workshops in Washington, D.C. to learn from top scientists at Howard University, NOAA, and NASA. The attendees then incorporated the AMS Climate Studies course materials, real-time data, and lessons in their teaching.

 diversity project 1

Since 2001, in faculty enhancement through the AMS Weather Studies and Ocean Studies courses and now the Climate Studies Diversity Project, AMS has engaged 24,000 students through 220 MSIs.
Two of the MSI faculty who presented their climate science teaching in New Orleans shared with The Front Page blog their impressions of the May 2015 AMS Climate Studies Course Implementation Workshop:
Ivetta Abramyan, Professor, Florida State College at Jacksonville:
The combination of noteworthy speakers and fascinating field trips made the workshop a very informative and engaging environment and I found myself absorbing a plethora of information. Upon walking out of our meeting room on the last day, I realized that I not only gained a wealth of knowledge on a variety of climate-related topics, but also gained a support system that I will hopefully have for the rest of my career.
We were armed with valuable resources to help us tackle the challenge of teaching a brand new course or incorporating new material into existing courses. I learned about so many new websites, programs, initiatives, and funding opportunities. The field trips to NCEP, the Beltsville Center for Climate System Observation (BCCSO), and NASA Goddard provided an opportunity to see the operational side of the field. They were inspirational and motivating to say the least. In fact, I had a student email me a few days later asking for some ocean data. It felt good to be able to direct him to one of the NOAA Ocean Prediction Center sites that was shown to us during the NCEP tour.
In addition to the arsenal of tools and resources we were given, the workshop provided indispensable insight and sense of community. There were quite a few quotes that left an impression on me, some of them being: “We did not get out of the Stone Age because we ran out of stones,” by Rear Admiral David Titley, and “every state is an ocean state.” However, the one that really resonated with me was from Frank Niepold, the Climate Education Coordinator at NOAA’s Climate Program Office, who mentioned that students are getting the majority of their climate information from unskilled, unreliable, nonscientific sources. That statement is overwhelmingly true, and it made me realize just how much of an impact we, as educators, can potentially have on our students.
Another aspect of the workshop that I found intriguing was the diversity among the faculty in attendance. So many different institutions were represented, both large and small. The faculty also had various educational backgrounds. Our group of approximately 30 professors consisted of meteorologists, geologists, oceanographers, biologists, geographers, and everything in between.
Regional differences were also very evident. For example, I teach on a campus that is approximately nine minutes from the coast, and found it fascinating that other workshop attendees and fellow colleagues have classes in which the majority of students had never been on a boat. These conversations sparked ideas for collaboration projects within the cohort and we were excited to present our results at the AMS Annual Meeting. The connections we made at the workshop can be just as important as content in making us effective leaders in an effort to help change the world with respect to climate education.
On a more personal note, it can be a challenge for minority serving institutions to encourage their student body to pursue the STEM fields. The Earth science and physical science majors are extremely underrepresented in our population. We have few traditional students. My students range in age from 16 to 66. Some have full-time jobs. Some have families. Some are active military. Although they have the same drive, aptitude, and interests as traditional students, they may not have the resources. Many of them have academic dreams, but don’t know what opportunities exist. They don’t realize that NASA, NSF or other federal agencies would be willing to fund them if they were to pursue those dreams. They may be interested in the atmosphere or the oceans, but lack the motivation or confidence to make it a career path. It could be something as minor as not having the right information. Some of these students have a potential fire within and it is up to us to provide the spark to truly make them shine. We are on the front lines, not just for climate education, but STEM disciplines in general. Our voice is the bridge between can’t and absolutely can and I truly feel like the AMS Climate Diversity Project Workshop helped strengthen that voice.
In fact, as I was writing this, I received another email from the aforementioned student that I gave the OPC link to. He is declaring that he wants to change his major to a physical science and wants to meet to discuss his options. This student also happens to be a minority. It’s pretty rewarding to see the impact that this workshop is already having before the course has even been taught. I hope to utilize everything I learned during that week to inspire my students the way that the workshop inspired me.
María Calixta Ortiz, MSEM, (PhDc), Associate professor, Universidad Metropolitana, San Juan Puerto Rico:
One of the best decisions I have made was to apply for an announcement from Second Nature inviting professors to be part of the Climate Diversity Project from the American Meteorological Society. Our climatology course, which I have not taught, had not incorporated climate change. I was searching for more experience with climate change to integrate it to the curriculum at my school.
Climate change has mixed meanings for students living in an island in the Caribbean. Most of the time, students underestimate and misunderstand the topic, mainly because it is seen as a future event, and because models have many uncertainties. Traditionally, water sources in Puerto Rico have been considered vast and sufficient for all purposes. However, this availability could be impacted by future challenges of climate change. Puerto Rico has experienced climate variability in terms of alternated extremely heavy precipitation in some areas and droughts in other areas that have driven potable water rationing.
In addition, being an island, 67% of the population lives in coastal municipalities. Demand for the occupation of coastal land increased 25% over the period 2000-2005. The amount of population living in coastal areas signalled a challenge for policymakers and environmental planners.Change and climate variability combined with social, economic, and environmental factors produce synergistic effects on human health. Climate change is definitely a threat to human health, so “it is about people.”
As the dean of the school, my AMS experience will help me in different ways to update the curriculum. First, I intend to include knowledge and evidence on climate change—NOAA data, NASA simulations, and current references—as part of the course of climatology. Then, we will include the topic in related courses: environmental science, Earth science, and oceanography.  Finally, when I feel comfortable with the topic, I will teach the course of climatology myself.
In the future, the school can move to consider a master degree in climate studies focused on preparing the population for mitigation and adaptation. We are responsible for preparing professionals for building resilience within communities, and to develop leaders who will have the ability to cope with external perturbations to society and its infrastructure caused by climate variability. More students need to understand Earth’s climate system and the evidence of climate change to evaluate potential impacts on human health and to improve the decision-making process.
 
 
 

AMS Summer Policy Colloquium–An Investment in Your Future

One of the special, life-shaping mid-career experiences AMS offers is the  Summer Policy Colloquium in Washington, D.C. The AMS Policy Program is accepting registrations now for the 2016 Colloquium, held 5-14 June; don’t delay, because the slots fill up well in advance. Grad students (and faculty from minority-serving institutions) can apply for NSF support to attend. The deadline for those funding applications is 31 March.
Here we share the first-hand impressions of a graduate student who attended last year’s colloquium.
by Alice Alpert, MIT/Woods Hole Oceanographic Institution 
My favorite moment was adding the “poison pill” amendment to the amended HR2380 to ensure that the opposing party could not vote yes on it. I doubt that real senators laugh as much as we did. “We” were the participants of the 2015 AMS Summer Policy Colloquium – scientists and federal agency employees studying weather, water, and climate. Every year, AMS hosts this 10-day intensive program designed to give attendees an intensive introduction to the policy process.
Over the 10 days, we learned about and engaged with science policy through talks by current practitioners and hands-on activities. Each day focused on a different topic, including an introduction to science policy; practical perspectives from executive, legislative, diplomatic, private, and nonprofit sectors; science communication; and executive leadership. Speakers from throughout the federal government and beyond described their personal career paths, discussed how they practice science policy, and dispensed nuggets of advice. Woven throughout the event were practical simulations, including a role-playing activity of the legislative process in which we amended a bill and negotiated for a final vote. In the end my senator’s poison pill was misguided, but the lesson was not lost.
There are many aspects contributing to the great success of the policy colloquium that together create an immersive and exhilarating learning environment. Instrumental to the experience is the leadership of the AMS staff, Bill Hooke, Ya’el Seid-Green, and Paul Higgins. They meticulously but flexibly plan the event, reach out to high-level public servants, listen carefully to feedback, and most of all show a profound respect for the participants.
Another key ingredient is the invited speakers from high levels of government. They provide concrete examples of what science policy is and what it means both in day-to-day activities and in larger abstract goals. From my own perspective, embarking upon a career in science policy from a PhD is difficult because there is no one specific path to take, and indeed it is hard to see any from within academia. The speakers in the SPC program, from a former Congressman to senior White House advisors to agency heads, provide examples of specific roles and make a future in science policy much clearer. They often started out with similar paths to those of the participants, and in many cases are actually colloquium alumni who launched a career from this program. Their words were inspiring and will remain with me in the years to come.
The last ingredient is the participants themselves, coming at a range of career stages from academia, federal agencies, and the private sector. Our range of backgrounds and experiences meant we could provide each other valuable perspectives. Many of us in academia feel like we do not quite fit in, and we are our own greatest resource in connecting with each other to create a pool of support. It was exhilarating to meet the people who I am sure will become my colleagues.
This program is an incredible investment both for the future of policy for science and science for policy. It develops the links to strengthen financial support for the work of the scientific community as well as enhances our ability to produce science that serves society.
Personally, I have planned to enter science policy since before I started my doctoral studies. I have been involved in student policy groups, participated in congressional visit days, done oh-so-many informational interviews, taken relevant classes, and researched policy fellowships. But all that did not illuminate the world of science policy in the way the AMS Summer Policy Colloquium did. I found role models, and discovered in myself a voice that I had never heard before. I return to my PhD research energized and eagerly anticipating a future in science policy.

2016 Washington Forum to Focus on Risk Management

by Shawn Miller, Chair, Board of Enterprise Economic Development
The AMS Board on Enterprise Economic Development invites you to attend the 2016 AMS Washington Forum, April 12-14, 2016, at the American Assocation for Advancement of Science (AAAS) Building in Washington, D.C. The purpose of the AMS Washington Forum is to provide an opportunity for members of the weather, water, and climate community to meet with senior federal agency officials, Congressional staff, and other community members to hear about the status of current programs, learn about new initiatives, discuss issues of interest to our community, identify business opportunities, and speak out about data and other needs.
This year’s theme is “Leveraging Environmental Intelligence to Enhance Risk Management.” Following that theme, the Forum will focus on the use of weather, water, and climate data–together creating a foundation for environmental intelligence–to support risk management across the public and private sectors. This includes agencies and companies whose operations and planning are dependent on environmental factors, as well as agencies and companies whose primary mission is to identify, analyze, and/or mitigate environmentally induced risks. Several special topics are planned for interactive panel discussions, each with a special focus on risk management, including an overarching theme session, environmental security, water resources, space weather, big data, and renewable energy.
We will invite senior leaders from agencies such as NOAA, NASA, DoD, and FEMA to look ahead and provide updates on current weather, water, and climate programs and provide insights on new science initiatives and directions. We will also invite leaders from the Office of Management & Budget and the Office of Science & Technology Policy, and from Congress, who will discuss the latest programs and legislative initiatives in our enterprise to better serve the American people.  For our keynote, we have invited Dr. DJ Patil, U.S. Chief Data Scientist at the White House Office of Science and Technology Policy.
We hope to see you in D.C. in April!

Letting Scientists Benefit Us All

Lately you may have noticed that AMS has garnered media attention by standing up for NOAA scientists who are the focus of Congressional scrutiny. This scrutiny was initiated after the scientists re-analyzed global surface temperatures with newly corrected data and found that the warming trend of the second half of the 20th century has been continuing unabated since 1998 instead of experiencing what sometimes has been portrayed as a warming “hiatus.”
AMS doesn’t step casually into political arenas. As a non-profit scientific and professional society, we remain solidly grounded in the world of science. We help expand knowledge and understanding through research and, as our mission states, we work to ensure that scientific advances benefit society. We engage the policy process to help inform decision making and to help ensure that policy choices take full advantage of scientific understanding.
This case is slightly different, however, because the scientific process itself is at risk. When the scientific process is disregarded or, worse yet, possibly derailed, a political issue can become an AMS issue.
The scientific process that AMS and other like-minded institutions have championed over the centuries is about taking careful observations, conducting controlled experiments, separating personal opinions and beliefs from evidence, and, perhaps most critically, exposing scientific conclusions to rigorous and repeated testing over time by independent experts. These repeated cycles of distribution and “trial by fire” happen most notably at meetings, in peer-review, and in publication.
Crucially, the process systematically removes as much as possible of our human tendency to see what we want to see and puts the burden of proof on reproducible steps. It is a disciplined, particular way of finding truths, no matter how elusive, while rendering biases, opinions, and motivations as irrelevant as possible.
This systematic approach to separating fact from opinion occasionally goes astray, of course, but its iterative nature means that science is continually self-correcting and improving; better data and understanding ultimately replace older thinking. Science encourages people to question and challenge thinking, certainty, and accuracy—but it requires they focus exclusively on what they can detect and measure and reason.
Even though all the data, logic, and methodologies are publicly available, the paper rejecting the global warming hiatus inspired Congressional requests for additional email and discussions. Asking for these correspondences—especially from scientists themselves—can easily weigh down the ingenious process by which science has continually advanced. And so AMS made public statements in favor of letting science freely work its wonders. It’s not the first time AMS has done so, and it probably won’t be the last.
We owe much of modern prosperity to an unencumbered scientific process, and it continues to provide some of the most profound and dramatic advancements in the world. This includes medicine, biology, chemistry, computing, agriculture, engineering, physics, astronomy, and, of course, meteorology, hydrology, oceanography, and climatology. Every one of us benefits every single day from what scientists have learned, shared, and provided.
And that’s yet another reason why occasionally AMS must speak out—because of our mission “for the benefit of society.” The point is not just to protect science but also to protect the benefits that knowledge can provide to all of us, no matter what we think of the results. In this, our scientific society actually has much in common with the politicians and policy makers in Washington, D.C.
AMS stands behind the scientific process and will defend that process when necessary, but our goal is to work with policy makers to promote having the best knowledge and understanding used in making policy choices.

A New Web Vision

by Tom Champoux, AMS Communications Director
You may have noticed that AMS rolled out a new website today, updating content and navigation in a brand new design. We hope you like it. This is a critically important step for AMS as we continue to improve the communication of our value to our members, to the greater weather, water, and climate community, and to society.
Many tens of thousands of people in our community work extremely hard to create and share knowledge to benefit society. Our website is a tremendously important vehicle in supporting that effort—engaging, informing, and inspiring people. It is a place for the entire community to connect, share, and collaborate. The redesign helps the website do all this by capitalizing on more up-to-date technology and creating a more modern online experience. website_screenshot1
The new look points the website in a new direction, as well. Immediately you’ll notice the shift in the homepage, which previously tried hard to be all things for all people, inevitably with limited success. The new home page focuses less on engaging members directly. Instead, we put more focus on educating all visitors about how AMS supports and strengthens this vibrant community. As a result, navigation is simpler and cleaner; there are more images to convey the excitement, dedication, and enthusiasm that is so apparent across the entire enterprise.
Throughout, the colors are more modern, and the look and feel better represent the tremendous passion and commitment of AMS members and their community.  We wanted to accurately capture that spirit in this new site, and of course make it is easy to find what’s new at AMS.
We felt the website would serve AMS best by

  1. delivering the AMS’s core assets;
  2. educating and inspiring audiences inside and outside the community;
  3. expressing the value of AMS to society at large; and
  4. creating community, bringing audiences together.

Those audiences extend far beyond our membership. While AMS has more than 13,000 active members, we reach a much larger and vibrant community that includes more than 28,000 Facebook and 10,000 Twitter followers. There are also thousands more volunteers, meeting attendees, presenters, authors, and many others who are deeply engaged with AMS and our work, but are not currently active members. These audiences span the career spectrum, from students to late-career professionals. We reach thousands of educators as well as all kinds of enthusiasts. We believe AMS has much to offer everyone and we wanted to be sure the website effectively showed all the ways we can help the community and society.
We’ll continue adding new content, updates, and information in the coming weeks and months to ensure that the AMS website remains a dynamic, engaging online experience for all audiences. We welcome your feedback and comments.

Is This Our Moonshot Moment?

by Douglas Hilderbrand, Co-Chair, AMS Board on Enterprise Communication
Have you ever imagined being a NASA scientist back in the 1960s – staring at the seemingly impossible challenge to send people to the moon and return them back to earth safely? And, doing it with the entire world watching? For the weather, water, and climate “enterprise,” that grand challenge might well be upon us.
Extreme events are now a fixture on the evening news, captured by miniature cameras and video recorders in our hands, and shared across our network via social media. Yet, heartbreaking stories of lives lost and communities devastated continue. Is this our moonshot moment? Physical science, social science, and technological advances have aligned to where the foundational warning process can take a giant leap forward from the time of lunar landings in the early 1970s to today’s smart phones.
On 4-6 August, leaders across government, academia, and industry sectors will come together at the AMS Summer Community Meeting on the campus of North Carolina State University to engage one another on how to modernize the end-to-end warning process. This summer’s theme, “For the Greater Good: Strengthening Collaboration, Consistency, and Trust to Support Informed Decision Making,” points to the ingredients that are needed to take a giant leap toward:

  • Improving how weather, water and climate threats are predicted and communicated
  • Enhancing information for risk management decisions through better expression of urgency and confidence
  • Supporting appropriate actions by the public

The value of weather, water and climate information is reflected in the decisions that are made, actions that are taken, and outcomes that result. I’m reminded of a 2011 quote from NOAA Administrator Dr. Kathryn Sullivan, who stated, “Conversation is the seminal technology of all societal change.” The SCM is an important step in bringing that conversation to the private, public, and academic sectors in an effort to help bring about meaningful societal change.
The 2015 Summer Community Meeting in Raleigh will help identify opportunities to collaborate, increase consistency and build greater trust within the enterprise and outward to the public as we take on our moonshot moment. The challenges that we face today may not be quite as dramatic as landing astronauts on the moon, but they are certainly as important with so many lives and livelihoods at stake.

AMS Washington Forum: Unleashing Big Data and Big Discussion

Today at her keynote address to the AMS Washington Forum, U.S. Secretary of Commerce Penny Pritzker announced that NOAA is forming five new alliances to help bring its vast data resources to the public. The partnerships with Amazon Web Services, Microsoft Azure, IBM, Google, and the Open Cloud Consortium address the growing need for access to NOAA’s huge—and rapidly growing—environmental data resource.
That Secretary Pritzker’s announcement came at the opening of this year’s Forum is a testament to the sustained focus of these annual AMS gatherings in Washington, D.C. The Forum revisits recurring themes to build year-to-year unity—and progress—to the discussions. Last year, for example, the AMS Washington Forum participants focused on how data integration across disciplines and sectors drives the effectiveness of the weather, water, and climate enterprise. The Forum found that

Working across agencies and across sectors (e.g., health, energy) is becoming a new “normal” for solving problems. All agree the needs and demands for data, information and forecasts are continuing to change, so our enterprise must remain flexible and agile.

Though the context last year was more about the use of commercially provided data, this continuing Forum theme resonates with Secretary Pritzker’s announcement today. The new government-private sector partnerships are part of the overall movement toward “open government”–accessible, consistent data practices—that should enhance the flexibility and agility emphasized at the AMS Forum last year.
Forum participants also generally agreed last year that “while the private sector needs to take on a bigger role in the provision of weather data, the public and private sectors need more time to jointly determine the best path forward.” And indeed at that time NOAA was in an information-gathering phase preparing for the partnerships announced today. The agency issued a Request for Information (RFI) in February 2014 to see who might be able to help move NOAA data onto the cloud. Commercial partnerships would, according to the RFI, help pull together disparate NOAA sources and web sites and help people “find and integrate data from these sources for cross-domain analysis and decision-making.”
Data integration was not the only motivation. Being the main provider of its own data saddles government agencies with burgeoning information technology needs.
In a separate email news letter today, NOAA Administrator Kathryn Sullivan elaborated on the scope of the Big Data need:

Of the 20 terabytes of data NOAA gathers each day — twice the data of the entire printed collection of the United States Library of Congress — only a small percentage is easily accessible to the public.

The cloud was a way to alleviate this situation, as the RFI stated:

NOAA anticipates these partnerships will have the ability to rapidly scale and surge; thus, removing government infrastructure as a bottleneck to the pace of American innovation and enabling new value-added services and unimaginable integration into our daily lives.

Private sector cloud services have a history of meeting such challenges. The cloud services are able not only to store the huge quantities of data NOAA produces each day but also to provide opportunities for cloud-based applications. This means information processing is possible remotely so that each user does not need to have his or her own advanced infrastructure to move and manipulate vast troves of data. Thus, working in parallel with traditional NOAA data distribution channels, cloud services are expected to enable widespread use of Big Data and to drive private-sector development of applications.
The continued AMS discussions here in D.C. over Wednesday and Thursday will further amplify such continuing themes as Big Data, providing an especially rewarding venue for participants who can return year after year to the Forum.  For example sessions tomorrow on “Rail and Trucking” and “Information Needs for Water Related Extremes” hinge in part on data dissemination. Surface transportation was one of the panel topics last year, as well, meaning repeat participants this year will have an opportunity to update their earlier impressions and find out how opportunities in that field are progressing.
By reaching out to the innovators of the cloud, NOAA stated it was

looking for partners to incite creative uses and innovative approaches that will tap the full potential of its data, spur economic growth, help more entrepreneurs launch businesses, and to create new jobs.

That’s pretty much the same reason leaders of the weather, water, and climate enterprise return year after year to the AMS Washington Forum.
 

For Data to Live Long and Prosper

On February 25, the AMS released its new policy on citations for data sources in journal articles. We were all set to tell authors about it when sadly, far bigger news stole the attention of scientists everywhere. The great creator of Spock, actor Leonard Nimoy, had died. Within two days, the story of data policy had become the story of Star Trek.
“That’s not logical,” you say.
OK, we’re not Vulcan, but even a human can see this. Data. Spock. Now is the time to bring them together.
Nimoy made an improbable—some would say illogically great—impact on society masquerading as a half-Vulcan, half-human creature named Spock hurtling through space on both the small and big screens. The tributes following Nimoy’s death last week have spoken of his ability to transcend the seeming limitations of such a curious role. Nimoy embodied racial ambiguity in a time of prejudice, ennobled diplomacy and rationality in an age of war, and gave voice to those who feel alien in their own neighborhoods and schools.
Of all the dualities in Spock’s character—so brilliantly portrayed by an immigrant’s son who skipped college—arguably the most explicit was as the science officer on bridge of the “Enterprise.” His struggle to remain true to the Vulcan creed of logic without emotion was a perfect expression of science in its time. For nerds of the 1960s and ‘70s, Spock’s reliance on logic echoed the haughty aloofness with which popular culture characterized scientists of the Cold War. But through his formidable devotion to knowledge, truth, and teamwork—working through all the pointy-eared social awkwardness he faced among his crew-mates– Spock somehow made science a new kind of “cool” long before geeks made billions of bucks with computers.
The thing is, scientists are a duality, much as Spock and Captain Kirk were two sides of a coin. They get emotional about two things. One is logic. Scientists, like mathematicians, get dewy-eyed about beautiful theories, elegant proofs, and ingenious solutions. The other is data. Unlike Spock, they work themselves into a frenzy over data. The best way to make scientists swoon is to produce data that reveal secrets.
For science to live long and prosper, that data need to be treasured like a home planet. For a long time, most scientific publishers thought it was good enough that journal authors would casually mention data archives in their Acknowledgments. In this age of computer models and constantly updating technology, that’s not good enough. Now authors must use carefully sourced and dated formal citations and references that in turn lead to safeguarded, easily accessible repositories. The author’s guide online gives some helpful examples.
The new citation policy is just one step of many advancing data archive practices that were recommended in the AMS Statement on Full and Open Exchange of Data adopted in December 2013. That statement also calls on funding agencies to recognize the costs of managing data. It recognizes that data preservation and stewardship should be emphasized and discussed at meetings. It says AMS should promote conventions and standards for metadata to increase interoperability and usage, and that the Society should foster ways of deciding what data should be kept to improve preservation practices in the future.
AMS is not alone in this shift. There are others in the chain of research, publication, and archiving trying to do for data what Spock did for logic. Our Society is one of the original members of a year-old team of publishers, data facilities, and consortia called the Coalition on Publishing Data in the Earth and Space Sciences. COPDESS is working to ensure that data are preserved through proper, secure funding, and that careful decisions are made about what should be saved.
Most importantly, this international movement toward protecting and providing data is meant to preserve the scientific process. Science needs published studies to lead to more studies that can confirm or reject findings. According to the AMS Statement,

AMS should strongly encourage an environment in which scholarly papers published in scientific journals contain sufficient detail and references to data and methodology to permit others to test each paper’s scientific conclusions.

All that depends on data being available in the review process as well as in perpetuity, with published results closely aligned with open archives.
Logic and Data: the duality of the scientific spirit. It is easy to celebrate one without the other, but it would not be proper. Spock would understand.

AMS Summer Community Meeting

by Tom Champoux, AMS Director of Communications
Recently, severe thunderstorms rolled east across the greater Boston area that culminated in an EF2 tornado touching down in the city of Revere, just a few miles from my house.
As I watched the weather on TV that day, I noticed some new information provided by the meteorologist as he gave his severe weather updates. Not only did he show the storm’s path, size, speed, intensity, and time of arrival, but he also included the number of people who were in the line of the storm’s path – in this case more than 200,000 would be affected.
This drive to continually innovate the flow of information to the public—refreshing, improving, and updating services in the process—is ingrained in the character of our weather, water, and climate community. It’s a process driven by AMS members across the enterprise.
I was reminded of this repeatedly while attending the AMS Summer Community Meeting this week in State College, Pennsylvania. This year, the theme was “Improving Weather Forecasts and Forecast Communications.” More than 160 attendees from across the country, including leaders in government, academic, and private sectors, convened to discuss, collaborate, and consider ways of improving weather data being collected, retrieving usable information more quickly, and sharing the most accurate information with the public as quickly as possible. In extreme cases, people have to make critical decisions in a matter of minutes.
Discussions focused on how to better inform the public, ensuring their awareness and safety while decreasing false-alarm rates. During the meetings, it became apparent very quickly how important this topic is to the entire weather, water, and climate community, and that hosting these meetings is a vital step for AMS as we bring together key stakeholders to continue improving all aspects of the enterprise. This year’s AMS Summer Community Meeting not only included well-known weather agencies, organizations, and companies but also social scientists, emergency managers, risk analysts, educators, big data specialists, and broadcast meteorologists.
Discussions covered a wide variety of topics such as public perceptions of words like “likely,” “probable,” “possible,” and “certain,” to describe potential weather. Other panel talks included, “Improving Communicating of Forecast Uncertainty,” Communicating Forecast Confidence,” “Conveying Weather Risk,” and “The Weather Enterprise of the Future.” There were also talks about how various social media may hurt or help communicating accurate information.
A tour of AccuWeather Forecast Center headquarters here during the meetings showed how important these issues are to the entire company. I was impressed with their efforts to improve technology, data collection, analysis, and communications. Similarly, National Weather Services Director Louis Uccellini was on hand to talk about what the NWS is doing to address these issues.
The AMS Summer Community Meeting is unique because of the ideas that emerge there. It also is a reminder of how vital it is to bring everyone together. Ideas, information, and experiences are shared freely, and the conversations both inside and outside the meetings remind us all how committed everyone is to constantly improving the entire enterprise, whether they’re doing it independently in their separate jobs, like my local weathercaster, or together in valuable gatherings like the AMS Summer Community Meeting.