Epic Blizzards Paralyzed New England, Midwest 40 Years Ago

By Chris Cappella, AMS
It began with a whisper. And ended in smothered silence for millions.
 

Cars and trucks stuck in snow on Route 128 near Needham, Massachusetts, following teh Blizzard of '78.
Cars and trucks stuck in snow on Route 128 near Needham, Massachusetts, following the Blizzard of ’78. Source: U.S. Army Corps of Engineers
Slideshow of blizzard photos.

 
I’ll never forget seeing tiny snowflakes blowing down Ocean Avenue in our small sea-side suburb of New Haven. In my hometown of West Haven, on the south shore of central Connecticut overlooking Long Island Sound, when snow fell it usually just stuck, firmly. On everything. The relative warm ocean water often changes our winter events to miserably cold rain. It never allows for dry, powdery snow. Or so I thought. Today—February 6, 1978—would be different. Far, far different. Than many of us hearty New Englanders, as we’re known, had ever seen. For that silky soft sinewy snow I was seeing in the infancy of this storm would grow into a furious blizzard and bury the region—a blizzard by which all others there since would be measured.
The tiny flakes blew into snowy tendrils that would side-wind down the road until they escaped the wind. And pile into miniature snowdrifts. A harbinger of things to come, but on a gigantic scale. This was the beginning of the epic Blizzard of ’78 in New England. Over the next 30+ hours, the snow would fall heavier than anything I—and most of us in the Northeast—had ever experienced. Sideways snow. Two to three inches an hour. For hours and hours. Blowing in winds gusting over 50 mph region-wide, and to hurricane force along the coast. 110 mph Scituate, Massachusetts. Snow so deep even as a 12-year-old I would struggle to walk in it. Drifts so large and deep they dwarfed entire houses. You could jump off second-story rooftops into them. And my friends and I did. Off our grammar school roof. Even its 45-foot high gymnasium roof. Weightless, for a second or two. And then: whump! We’d completely disappear in snowdrifts 10-15 feet tall.
Buried barely begins to describe the otherworldly landscape. Nearly all human life in the region would slow down and eventually grind to a halt. Thousands of people stranded on roadways as blinding snow enveloped everything, too quickly to make an escape. Governor Ella T. Grasso ordered all vehicles off the roads. We capitalized on it. Building giant snow forts with tunnels in the mountains of snow piled on sides of our road. Only once, though, did we recklessly dive into our snow tunnels to escape an oncoming snowplow. Luckily for us kids the snowplow only took out the last 3-4 feet of our tunnels, sparing us certain death. By snowplow.
Legendary Boston meteorologist, Harvey Leonard, who was just 29 then, remembers seeing “big potential” for a major snowstorm coming together in the Northeast four days beforehand—a lead-time “close to unheard of” in those days, he told The Boston Globe in a recent article chronicling the blizzard.

“As a person — not only a meteorologist, but somebody who really loves weather and is fascinated by storms, particularly winter storms — it was pretty amazing to see what was unfolding. ‘78 still stands as the most powerful and wide-reaching storm that I’ve ever been involved in forecasting and experiencing.”

The defacto “official” website devoted to the storm—blizzardof78.org—put together by amateur historian Matt Bowling describes how a failed forecast weeks earlier set up a situation in which people headed to work and school that Monday morning, February 6, as if just a routine snowfall was expected.

It is safe to say that by the time February 6th, 1978 came along, New Englanders had been pretty-well trained to not pay much attention to the weathermen. It had been a difficult winter already. On January 21st, as most forecasters predicted only rain, New England had been blanketed by a major league snowstorm that dropped 21 inches of snow in Massachusetts and downed a record number of power lines in Rhode Island.   This forerunner to the Blizzard of ’78 had brought so much snow that the roof of the Hartford Civic Center actually collapsed from the weight. When forecasters began predicting another big storm, nobody thought too much of it.

In a series of quotes gathered and posted to the site, WTNH-TV meteorologist and Western Connecticut State University professor Dr. Mel Goldstein continues this theme, describing why there was skepticism about the forecast for the storm:

Back in 1978 we did not have the accuracy of the computer models that we have today. And in 1978 there was a brand new computer model that came out and it was predicting the storm to be pretty much the magnitude it turned out to be. But because the computer model was brand new, people did not have confidence in it. And so there was some question whether or not people wanted to buy into the kind of product that it was delivering. To me it looked very reasonable … and I took my little bag of clothes and I moved into Western Connecticut State College weather lab and I said, ‘I’m going to be here for a few days and there’s no question about that. It’s in the logbook on that day: ‘a granddaddy of a snowstorm is coming our way.’

And in another Boston Globe article, noted weather columnist David Epstein wrote four years earlier about The meteorology behind the blizzard of February 6-7th 1978. In his article he reiterates how so many were caught off guard by the blizzard.

Computer models were still relatively new and a series of busted forecasts left many people skeptical that a big storm was actually coming. On the morning of the 6th, snow was suppose to start prior to the morning commute. However, when folks awoke and saw the snow hadn’t begun many of them decided it was another busted forecast and went to work. These same people would then try to get home that afternoon while the blizzard was fully underway.

A search on YouTube turns up numerous documentaries on the Blizzard of ’78, including “Blizzard of ’78,” below, on Leonard’s station WCVB.

Remarkably, New England’s Blizzard of ’78—with its record snowfall observations in Boston and Providence and its utter destruction along the Massachusetts coast as powerful winds slammed monster waves ashore through four tide cycles—came on the heels of a nearly equally intense blizzard that slammed the Midwest on January 25-27. That Blizzard of ’78 became known as the White Hurricane, with wind gusts of 100 mph and feet of snow shutting down states from Wisconsin to Ohio. It set pressure records (956.0 mb in Mount Clemens, Michigan—third lowest non-tropical atmospheric pressure ever recorded in the Unites States) and remains the worst blizzard on record in Ohio, Indiana, and Michigan.

Surface weather analysis of the Great Blizzard of 1978 on 26 January 1978. Source: NOAA
Surface weather analysis of the Great Blizzard of 1978 on 26 January 1978. Source: NOAA

 
Its magnitude was summed up in a statement by NWS Detroit meteorologist C. R. Snider on January 30, 1978:

The most extensive and very nearly the most severe blizzard in Michigan history raged January 26, 1978 and into part of Friday January 27. About 20 people died as a direct or indirect result of the storm, most due to heart attacks or traffic accidents. At least one person died of exposure in a stranded automobile. Many were hospitalized for exposure, mostly from homes that lost power and heat. About 100,000 cars were abandoned on Michigan highways, most of them in the southeast part of the state.

Nearly three dozen times as many cars abandoned—and that was in just one Midwestern state.
To some, Blizzard of ’78 conjures up memories of a similar yet completely different storm.

It Used to Be "Inadvertent Climate Modification," Too

AMS Executive Director Keith Seitter sent a letter today to President Trump. It begins,

In an interview with Piers Morgan on Britain’s ITV News that aired Sunday, 28 January, you stated, among other comments:
“There is a cooling, and there’s a heating. I mean, look, it used to not be climate change, it used to be global warming. That wasn’t working too well because it was getting too cold all over the place”
Unfortunately, these and other climate-related comments in the interview are not consistent with scientific observations from around the globe, nor with scientific conclusions based on these observations. U.S Executive Branch agencies such as NASA and NOAA have been central to developing these observations and assessing their implications. This climate information provides a robust starting point for meaningful discussion of important policy issues employing the best available knowledge and understanding.

Read the whole letter here.
In response to the BBC interview, Bob Henson of Weather Underground’s Category 6 blog gave a detailed debunking of the President’s comments. It’s a useful read for those wanting to parse out the persisting misunderstandings about the climate change discourse.
One misconception Henson clarifies is the talking point about which came first, “climate change” or “global warming.”

The history of the phrases “climate change” and “global warming” is much more interesting than Trump gives it credit for. Researchers were using climatic change or climate change as far back as the early 20th century when writing about events such as ice ages. Both terms can describe past, present, or future shifts—both natural and human-produced—on global, regional, or local scales.

Climate change is a general term that has applied over the years to many forms of climate change. Per the AMS Glossary:

Any systematic change in the long-term statistics of climate elements (such as temperaturepressure, or winds) sustained over several decades or longer.

It applies to both natural and human-caused changes (and “anthropogenic climate change” gets its own Glossary entry).
Obviously, the term still applies. So does “global warming.” In 2018 already, “global warming” is in the title of several scientific papers accepted to AMS journals.
Henson traces the first usage of “global warming”—a term specific to the observed climate trend—to a paper by Wallace Broecker in the 8 August 1975 issue of Science.
This may indeed be the first paper to apply “global warming” to a changed worldwide condition, via carbon dioxide release. Broecker was writing in anticipation of this trend becoming an observed fact, surpassing the then-prominent cooling influence of dust and pollutants as

the exponential rise in the atmospheric carbon dioxide content will tend to become a significant factor and by early in the next century will have driven the mean planetary temperature beyond the limits experienced during the last 1000 years

The idea that the Earth would warm as a whole, if not in every locale or region, was not new at the time of Broecker’s paper. In 1971, the National Academy of Sciences had included an objective to study the “effect of increasing carbon dioxide on surface temperatures” in its report, “The Atmospheric Sciences and Man’s Needs” (summed up by Robert Fleagle in BAMS that year).
The term “global warming” itself appears in AMS journals at least five years before Broecker’s paper. Jacques Dettwiller addressed the means of collecting long term global temperature records in the February 1970 Journal of Applied Meteorology. Lamenting the difficulty of separating out urban heat island effects, Dettwiller advocated monitoring deep soil temperatures, which seemed to “afford a means to monitor the global increase in temperature during the first half of the 20th century.”
For our purposes, it’s a landmark paper in the way Dettwiller cited a 1964 paper in Monthly Weather Review by Stanley Changnon that used such techniques in rural Urbana, Illinois: Changnon, wrote Dettwiller, “was able to discern values for global warming….”
At the time, the “current” term for global warming or anthropogenic climate change through the greenhouse effect was actually, ”Inadvertent Climate Modification.” That was the title of a 1971 report by an international group of climatologists convened by MIT and the Royal Swedish Academies for a “Study of Man’s Impact on Climate.” It was one of the first large consensus reports to warn of sea level rise, polar ice cap melt, major Arctic warming, and more.
After nearly a half century of highly prominent scientific warnings, a word was indeed dropped from the climate lexicon because it no longer made sense. That word was “inadvertent.”
 

Pathways from Meteorology–Political, Commercial, Personal

The path from good science to good societal decisions is the central paradigm not only of the scientist’s perspective on how to impact the world, but also to the public’s faith in science itself. It also turns out to be a path of personal growth as well.
There’s a whole genre of attempts to depict these connections between science and its usage. One noteworthy example of such diagrams was published by the Bulletin of the American Meteorological Society back in 2002. John Dutton (now of Prescient Weather, Ltd.; then dean at Penn State University), saw a need to update the flow of scientific information from numerical models to decision makers. He recognized the increased use of computerized decision models that were interpreting scientific forecast input; he also wrote eloquently about the feedback and blurring between economic sectors, users, and scientists. Here’s what he came up with:
DuttonWxDecisionModel
While Dutton’s focus was on expanding economic opportunity, he wrote with a palpable sense of inexorably widening horizons from that kernel of numerical weather modeling into all corners of societal activity: “Wider distribution leads to enhanced creativity and advancing capability as a thousand flowers bloom,” Dutton wrote.
That same vision of the expansive horizons, all stemming from a mere act of meteorology, infused Susan Avery’s address to the AMS Student Conference in Austin this year. Only in this case, it is a parallel to Dutton’s economic view–a rippling from science to policy to society. In her talk, titled “Usable Science: Connecting Science to Action,” Avery, president emerita of Woods Hole Oceanographic Institute, depicted the pathway from science to society as a personal journey. Her ever-widening ellipses show an expansion of opportunities, knowledge, and horizons throughout a career as you move beyond the possibilities of a scientific education.
AveryCouplingSciencePolicySociety
 
She explains:

Often those pathways, those learning opportunities, those experiences come about by the sciences themselves, and the evolution of the science. Believe it or not, the demands right now for you and predictive information—it’s not just about the weather forecast anymore.
I know this is the American Meteorological Society and everybody thinks it’s all about weather, but this Society itself, which has been an inspirational part of my personal and my professional growth, it also isn’t just about the weather anymore and the daily weather forecast.
I’d like you to think broadly as you go through your life and your career. Some of these learning experiences you might have will allow you to evolve your thinking in terms of what is knowledge of the atmosphere and how does it apply to something else other than the daily forecast.
Part of this idea of coupling science to use is associated with understanding the interdependency of what you’re trying to do and what you’re trying to solve. I like this diagram because—it looks kind of complicated—but it’s really the only one I can think of in trying to understand what is this connection between science, policy, society, and use.
First of all, the atmosphere is only one part of our planetary system. A lot of the atmospheric motions there are because of ocean-atmosphere interaction. You have to understand there’s an ocean driver there as well. When you worry about how that plays out in terms of people, you have to worry about where we live, on the land….A lot of atmospheric science departments today are really Earth system science departments. The science is pushing us that way.
If you want to apply that science to solving problems, it’s pretty important to understand what those problems are and the interdependencies particularly between the planet system and humans. So that second ellipse talks about those interdependencies—particularly population pressure, societal desires, and what that means in terms of consumption patterns, water use, energy use, where you live. We are a human forcing function on that planetary systems.

And so to the third ellipse and on to the last as the knowledge pushes us. Dr. Avery explained, “These are just some of the pathways that you might see yourself taking in the future.”
You now can hear Avery’s whole talk online.

Did You Hear? Echoes from the Annual Meeting

This year’s AMS Annual Meeting provided no shortage of memorable presentations. The focus on 2017’s hurricanes in particular yielded some of the most memorable moments, and now you can listen (again, or for the first time) for yourself. Recorded presentations are being uploaded gradually to the AMS meeting program site.
Richard Alley’s speech at the Presidential Forum was the first to go online, here including AMS President Roger Wakimoto’s introduction as well as questions from the audience:

Here’s a portion of Dr. Alley’s memorable riff on our semi-aware relationship to the science and technology we carry around in our pockets every day:

I’m a Newtonian physicist. I didn’t take quantum, I didn’t take relativity. But my understand is that the nice lady in the (cell) phone using the GPS is using both general and special relativity. Because down here, she is deeper in Earth’s gravity well and she is moving slower than the clocks on the satellite. And the correction from relativity is about 10 km a day. And she can do 10 km pretty easily. Which means if she didn’t have relativity, she would get lost in about two minutes. And that’s … We get where we’re going not only because of quantum mechanics but also because of Einstein. And, no, she will not fall for you because she’s canoodling with Einstein in the phone here.
But you know how these things work. Right? … I’ve been working on ice since 1977, the summer after my freshman year. My teachers, in geology and other things, I think if you were to ask them what is the most useless and esoteric science you can think of, they might have said relativity and quantum mechanics. And you’ve got relativity and quantum mechanics in your phone, in your pocket, and you can’t really think of living the life you now live if we didn’t understand relativity and quantum mechanics….
Climate science is not this new-fangled stuff you’ve got in your cell phone … it’s been with us for a long time. But I can tell you, and some of you out there know this as well, that there are people—good people, neighbors, people who pay our salaries—who will pull out their cell phone and send me a note saying, ‘You’re an evil liar. You should be fired.’ They go to my president and try to get me fired. Because I’m talking about this global nonsense. ‘These scientists are just trying to take away our pickup trucks.’ And they do it with a cell phone. And they are, I think, all across the board, good people. Some of them have been misled. And that’s something we have to come back to.

Also online now are the talks from the web-streamed Presidential Town Hall on the hurricane season.  Well worth a listen while you’re waiting for more talks to appear online, like this reaction to forecasting Hurricane Irma, from NBC-6 Miami Chief Meteorologist John Toohey-Morales:

In South Florida I’m known as the non-alarmist guy. I mean if you want a just-the-facts-and-he’s-not-at-all-that-excited-about-this-tropical-cyclone guy, I’m your person … But with Hurricane Irma … on Friday night … National Weather Service Key West … about to go into full-Katrina mode: catastrophic, life threatening, and those types of messages were about to go out … what does the non-alarmist guy do? (Plays video of his TV broadcast that Friday night.) ‘If you’re sitting on a Florida Key right now—What the heck are ya doing? Get out! Now!’

Or this zinger from FEMA’s Tony Robinson, while talking about Hurricane Harvey:

Working with our counterparts in the state of Louisiana a guy said, ‘I finally figured out your flood codes on when I should have flood insurance.’ And I said, ‘Oh, yeah? What’s that?’ He said, ‘Your driver’s license says Louisiana, you aughta have flood insurance.’ That’s a public service announcement right there. There’s 144 days to the start of the 2018 hurricane season.”

But it was Ada Monzon, WIPR TV/WKAQ Radio, San Juan, who drew a rare standing ovation after her heartfelt presentation on Hurricane Maria:

And I can tell you, that in my 30 years as a meteorologist in Puerto Rico, even going through Hugo and Georges and more than 10 other tropical storms … (I’m sorry) … For the first time in my life I was afraid. Not because of the wind or the storm surge or the rain. I was afraid [for] the future of Puerto Rico. … Still to this day there are great discrepancies on how many people died in Puerto Rico because of Maria. By government information, there were 64 dead. Our other entities have informed … of more than 1,000 dead. … The response and recovery efforts have been very slow and complicated. More than three months after the hurricane, near 45% of the island is still without power. Many are suffering. More than 100,000 people have left the island in the last three months, to Florida, New York, Texas. … Enduring two major hurricanes has been hard. But at the same time it has served a vast lesson to all our society: We need to find a way of living with natural disasters and other potential catastrophic events and we need to work harder as meteorologists and scientists to educate our public through all means of communication, especially social media.

 

Is It Just Us…or Was That the BBQ Talking?

So many conversations at the 2018 AMS Annual Meeting started–and ended–on the same note, and Dakota Smith captures it just right in his “Weather Nerds Assemble” vlog:

Communication is a huge aspect in this field….If a forecast is a hundred percent accurate, but no one understands it, it’s not a useful forecast. That in a nutshell was what this meeting was about.

According to Smith, all that geeked out conversation amongst 4,200 weather, water, and climate nerds added up to at least these four lessons:

  1. The future is bright: “I talked with so many intelligent, bright, passionate students who are bound to make an impact on our community. Keep up the grind!”
  2. Meteorologists are incredibly strong: The communications workshop reflecting on the experience of Harvey, Irma, and Maria showed that  “meteorologists across the country used…love and passion to fuel them through this relentless hurricane season.”
  3. Austin has incredible BBQ.
  4. Meteorologists are awesome. “I already knew this before…we love weather, and we love science!”

The last two are obvious, right? The first two make our day. Share your own take-away points; meanwhile, you owe yourself the injection of enthusiasm–just in case you got lost in the trees since returning home:

 

A Letter from AMS President Roger Wakimoto

Dear AMS Community,
I am delighted to send this letter to you after the wonderful Annual Meeting in Austin. You told us that the Presidential Forum with Richard Alley and the Presidential Town Hall on the recent hurricane season were the highlights of the week (both can be viewed online) and I am glad that our efforts to arrange for these two events were well-received. The latter was possible owing to our breadth as a scientific and professional society. It allowed us to assemble a panel of experts from the university and broadcast communities, NWS, FEMA, and Flood Control District that could tell a story that was quite engaging.
I was honored to have completed President Matt Parker’s vision for the Annual Meeting. I believe that he would have been very pleased with the program. Of course, the AMS staff, Executive Committee, and Council are an amazing and supportive group to work with and I owe them a deep debt of gratitude for supporting me during the past year.
I wanted to take this opportunity to highlight a couple of priorities that I will be working on in the coming months. I am deeply committed to diversity, equity, and inclusion. The AMS supports a number of programs that illustrate their commitment to diversity. However, I believe it is time to step back and review diversity, equity, and inclusion across AMS in a holistic manner and assess the collective effectiveness of its broadening participation efforts. What is our strategic vision on this important topic? With the support from Council, I appointed and charged a task force to review what the Society has accomplished to date in this area and to deliver a set of recommendations, including bold ones if necessary, to guide us as we rapidly approach our Centennial celebration. Susan Avery has kindly agreed to Chair this task force and I hope you contact her with your advice and suggestions.
There have been a number of events across the nation this past year that few of us could have predicted. The withdrawal from the Paris Climate Agreement (currently the only nation to do so), the March for Science, a proposed tax on graduate student tuition waivers, controversy at the EPA on the subject of membership on advisory committees and climate-related issues, and no Science Advisor for the Administration (the longest time this position has been left unfilled since it was created). These and other events beg the question whether AMS should alter the direction of its advocacy program or stay the course in this age of disruption. I have asked the Council to discuss this topic in the coming months so that we can define a path forward and communicate it clearly to all of you.
Finally, I would like to remind you of my vision for next year’s theme for the 2019 Annual Meeting in Phoenix, “Understanding and Building Resilience to Extreme Events by Being Interdisciplinary, International, and Inclusive.” It is the first time that extreme events, international and inclusive have been specifically highlighted in a theme and it is a timely subject owing to the natural disasters that impact our society and the need to build resilience. Xubin Zeng and Wen-Chau Lee are the overall program co-chairs and they are working with a great team that includes Julie Demuth, Rebecca Haacker-Santos, Sarah Jones, and Chris Schultz. The 2019 Annual Meeting will be the kickoff for a year-long celebration leading up the 2020 Centennial Meeting in Boston (will it snow or not??).
AMS has been a great organization that has supported me personally throughout my long scientific and professional career. In the bigger picture, AMS has endeavored to remain relevant and has adapted to change when necessary. Of course, AMS only exists because of you and the enormous number of hours that you volunteer to the organization. It is the primary reason that I know that the Society will continue to be strong and impactful for years to come. I hope to both meet and interact with as many of you as possible this year.
Roger M. Wakimoto, President, American Meteorological Society

Revisiting the Hurricane Town Hall Meeting

The all-star panel comprising Monday’s special Town Hall Meeting on the 2017 hurricane season provided a riveting discussion of the science, communication, and impacts of Harvey, Irma, and Maria, highlighted by Ada Monzón’s emotional talk about the devastating effects Maria has had on Puerto Rico. The session created a buzz among #AMS2018 attendees.


The entire session has now been posted to the AMS YouTube channel, and you can also watch it below.

Writing and the Collaborative Process

A good writer inevitably is also a good listener, always mining every conversation and interaction for the next gem that could be used in their work. Authors of AMS books are no exception, and this week in Austin you could be the person to provide one of them with a new idea or angle. A collection of authors will be reading from their works and participating in Q&A sessions with meeting attendees, providing you with an opportunity to discuss your interests with them and learn more about the writing process.
The events will take place on Tuesday and Wednesday at the AMS Resource Center in the Exhibit Hall. The Tuesday session will feature historical topics, with Bob Reeves exploring the history of long-range forecasting (4:oo PM), Jen Henderson speaking about Ted Fujita (4:20), Paul Menzel (4:40) and John Lewis (4:55) discussing Verner Suomi, and Lourdes Avilés looking back at the Great New England Hurricane (5:10).
Wednesday’s event will focus on science and society: Matt Barlow will speak about his forthcoming handbook for atmospheric dynamics (4:00 PM), Bob Henson will discuss climate change science and policy (4:20), and Bill Hooke (4:40) and Bill Gail (5:00) will consider the human relationship to climate.
A unique aspect of AMS books is the collegiality between the authors and their readers, and with this event we invite you to get to know some of them better and perhaps even help them with their craft. It’s the collaborative process at work!

Time Machines, Horse Ploppies…Richard Alley Will Do the Talking Today

From his book and PBS-TV series, “Earth: The Operator’s Manual,” to his renowned lectures at Penn State, Dr. Richard Alley is known for his humorous descriptions about serious science. Today he is the featured speaker as the 98th Annual AMS Annual Meeting begins in Austin, Texas.  Richard Alley
At the 18th AMS Presidential Forum  (4 pm, Ballroom D) Dr. Alley will use his unique brand of communication to discuss why communicating science to the public is no longer optional, but rather an imperative.
Dr. Alley, a renowned glaciologist and climate scientist, has a way with words. His colorful metaphors–like The Two-Mile Time Machine, the title his award-winning popular book about ice cores–put complex scientific issues into a comfortable perspective for perplexed audiences.
Last May, a couple months before a large piece of Antarctica’s Larson C ice shelf broke off,  Rolling Stone published an article about  potential catastrophic collapse of West Antarctica ice. In it, Dr. Alley explained that the Larson C breakage would not necessarily be an “end-of-the-world screaming hairy disaster conniption fit.”
And here, transcribed from a 2012 talk at the Smithsonian in which Dr. Alley explained the impact of burning fossil fuels and releasing CO2:

“You fill up a car and it’s a fairly big tank–you’re putting in a hundred pounds of gasoline. If you had to bring it home in gallon jugs it’d be a different world. But you drive off with it. And when you burn it — you add oxygen — and that makes CO2, and it goes out the tailpipe and you don’t see that 300 pounds per fill-up. Now, our students really get a kick out of it: at this point you say okay, suppose that our transportation system packaged the CO2 in a way we could see it … as horse ploppies…It’s a pound per mile driven for a typical vehicle in the fleet at this point. Ya know … Nnnnn — thffft. Nnnnn — thffft …. Our CO2 turned to the density of horse ploppies and spread over the roads of America would cover every road in America an inch deep every year. On average. Okay. In a decade … there are no joggers. We’d all be cross-country skiers. If we saw this it would be a completely different world. But it just drifts away and we don’t even see it.”

Sunday’s keynote talk at the Presidential Forum is likely to be just as, ummm, vivid. Simple but powerful. Definitely memorable.
It’s exactly the way Alley envisions engaging the public: by building the broad understanding necessary to make science actionable.

With Floods or Baseball, It's a Game of Percentages

Perhaps no one thought that Game 5 of the World Series would end the way it did. It started with two of the game’s best pitchers facing off; a low-scoring duel seemed likely. But the hitters gained the upper hand. In the extra-inning slugfest the score climbed to 13-12.
If you started that game thinking every at-bat was a potential strike-out, and ended the game thinking every at-bat was a potential home run, then you’ll understand the findings about human expectations demonstrated in a new study in the AMS journal, Weather, Climate and Society. University of Washington researchers Margaret Grounds, Jared LeClerc, and Susan Joslyn shed light on the way our shifting expectations of flood frequency are based on recent events.
There are two common ways to quantify the likelihood of flooding. One is to give a “return period,” which tells (usually in years) how often a flood (or a greater magnitude flood) occurs in the historical record. It is an “average recurrence interval,” not a consistent pattern. The University of Washington authors note that a return period “almost invites this misinterpretation.” Too many people believe a 10-year return period means flooding happens on schedule, every 10 years, or that in every 10-year period, there will be one flood that meets or exceeds that water level.
Grounds et al. write:

This misinterpretation may create what we refer to as a ‘‘flood is due’’ effect. People may think that floods are more likely if a flood has not occurred in a span of time approaching the return period. Conversely, if a flood of that magnitude has just occurred, people may think the likelihood of another similar flood is less than what is intended by the expression.

In reality, floods that great can happen more frequently, or less frequently, over a short set of return periods. But in the long haul, the average time between floods of that magnitude or greater will be 10 years.
One might think the second common method of communicating about floods corrects for this problem. That is to give something like a batting average–a statistical probability that a flood exceeding a named threshold will occur in any given time period (usually a year). Based on the same numbers as a return period, this statistic helps convey the idea that, in any given year, a flood “might” occur. A 100-year return period would look like a 1% chance of a flood in any given year.
Grounds and her colleagues, however, found that people have variable expectations due to recent experience, despite the numbers. The “flood is due” effect is remarkably resilient.
The researchers surveyed 243 college students. Each student was shown just one of the three panels below of flood information for a hypothetical creek in the American West:
FloodBlog1
Each panel showed a different method of labeling flooding (panel A showed return periods; panel B percent chance of flooding; panel C had no quantification, marking levels A-B-C). The group for each panel was further subdivided into two subgroups: one subgroup was told a flood at the 10-year (or 10% or “A”) marker had occurred last year; the other subgroup was told such a flood last occurred 10 years ago. This fact affected the students’ assessment of the relative likelihood of another flood soon (they marked these assessments proportionally, on an unlabeled number line, which the researchers translated into probabilities).
Floodblog2
Notice, the group on the right, who did not deal with quantified risks (merely A-B-C), assessed a higher imminent threat if a flood had occurred last year. This “persistence” effect is as if a home run last inning made another home run seem more likely this inning. The opposite, “flood due” effect, appeared as expected for the group evaluating return period statistics. Participants dealing with percentage chances of floods were least prone to either effect.
This test gave participants a visualization, and also did not quantify water levels. Researchers realized both conditions might have thrown them a curve ball, skewing results, so the researchers tried another survey with 803 people (gathered through Amazon.com) to control test conditions. The same pattern emerged: an even bigger flood-is-due effect in the group evaluating return-period, a bigger persistence effect in the group with unquantified risks, and neither bias in the group assessing percentage risks.
In general, that A-B-C (“unquantified”) group again showed the highest estimation of flood risk. The group with percentage risk information showed the least overestimation of risk, but still tended to exaggerate this risk on the scales they marked.
Throughout the tests, the researchers had subjects rank their concern for the hypothetical flood-prone residents because flood communication stops not at understanding, but at concern that motivates a response. Grounds et al. conclude:

Although percent chance is often thought to be a confusing form of likelihood expression…the evidence reported here suggests that this format conveys the intended likelihood information, without a significant loss in concern, better than the return period or omitting likelihood information altogether.

How concerned these participants felt watching the flood of hits in the World Series…well, that depended on which team they were rooting for.