SunSketcher (Part 1): Using Smartphones to Reveal the Shape of the Sun

Total eclipse image with Baily's beads

Guest post by Gordon Emslie (Western Kentucky University) and Hugh Hudson (University of Glasgow)

During the 2024 North American solar eclipse, a pioneering project aimed to use citizen-science smartphone data to help more accurately determine the shape of the sun. How did it turn out? This is part one of a two-part post. Read Part 2 here.

Solar eclipses provide infrequent opportunities to study the faint atmosphere of the Sun while evading the glare of its body. In these brief moments, one can really enjoy a direct view of the glorious solar corona. One can also deploy specialized astronomical instrumentation to record and analyze images and spectra. And now, solar research can take advantage of the amazing technological advances available in everybody’s smartphones: GPS timing and geolocation, and cameras with many pixels. In 2017, the Eclipse Megamovie project, led by Laura Peticolas of UC Berkeley, captured and blended many images of the solar corona into a uniquely seamless movie of coronal variations over the 1.5 hours of totality, along the full length of the eclipse track. For 2024, we wanted to expand on this success by using precise timing information of eclipse features to determine the precise shape of the Sun — all with ordinary smartphones! Thus was born the project that came to be known as SunSketcher.

Why does the Sun’s shape matter?

The Sun’s exact shape is determined by the flows of gas within its interior; precisely observing that shape gives us a better sense of what is happening underneath. Accurately measuring the Sun’s oblateness (its deviation from a perfect sphere) will also allow very precise calculations of the effects of solar gravity on the motions of planets like Mercury, which can help us test out different gravitational theories.

The physics behind the shape of the Sun

The exact timing of events during an eclipse — the beginning or end of totality, for example — depends upon how big the Sun actually is. Many (including the eclipse legend Xavier Jubier) have commented on the possible use of detailed timing of eclipse features to revise our knowledge of the size and shape of the solar disk. The Sun is a fluffy ball of hot gas, and there are several different ways you could define its edge, or limb, and thus its size.

So instead we ask: What is the shape of the Sun? That is a question one actually can get a meaningful answer to, by selecting any reasonable definition for determining the edge of the Sun, and then seeing how this varies around its circumference (the limb). Intuitively, the rotation of the Sun will make it oblate rather than a proper sphere, and we observe this shape distortion to be about 1/100,000th of the radius. But other internal flows and forces can cause distortions to the shape of the solar disk, and these have never been measured previously. Solar magnetism is one such factor: the Sun has a magnetic field which is generated by, and moves with, the ionized gases within its interior. This magnetic field, and the associated flows cause time-dependent shape variations such as coronal mass ejections and the 11-year sunspot cycle.

The edge of the Moon and Baily’s Beads

There are four “contact times” during a total solar eclipse — when the edges of the sun and moon appear, from our perspective, to meet. The first contact is when the Moon begins to pass in front of the Sun, and the fourth contact occurs a couple of hours later when the Moon, traveling at over 2,000 mph, finally exits the path between the Sun and the observer. The times of second and third contact1 are when the solar and lunar limbs just match (the leading edge at second contact and the trailing edge at third contact). At these times, so-called Baily’s Beads (see the image above) briefly appear, bright spots formed as the sunlight passes through the lunar valleys but is blocked by the several-kilometer high lunar mountains on either side. This gives us a marvelous opportunity to get very precise measurements of the solar limb, using trigonometry. The shape of the occulting lunar limb has now been mapped out in great detail by the Lunar Reconnaissance Orbiter and Selene satellites, with uncertainties as small as 5 meters. The eclipse lets us transfer this mapping to the Sun; since the Sun is about 400 times further from the Earth than the Moon is, a 5 m lunar roughness translates to a distance of only 2 km on the Sun, a tiny fraction of the 700,000 km mean solar radius. Multiple measurements of the precise timing of Baily’s Beads can therefore map out the shape of the solar limb with unprecedented precision, and this information can in turn be used to constrain the flows within the solar interior.

1 Note that for an annular eclipse (see below) the times of second and third contacts are reversed from their counterparts during a total eclipse. During an annular eclipse (see Figure 1), second contact corresponds to the trailing edge of the Moon being coincident with the solar limb, while third contact occurs when the leading edge subsequently arrives at the opposite edge of the solar disk.

A student-built smartphone app: SunSketcher 2024

The SunSketcher smartphone app was designed, developed, and implemented by a team of faculty and students at WKU (with majors ranging from computer science to art and design) to carry out the precise timing observations of Baily’s Beads necessary to map (“sketch”) solar oblateness. Its basic functionality is surprisingly simple: starting with the GPS location of the phone (known to a distance accuracy of a few meters, comparable to that of the lunar limb from the Lunar Orbiter Laser Altimeter [LOLA] database), the app uses2 the Besselian elements of the eclipse to calculate the precise times of second and third contact at the observer’s location.3

The app then commands the phone’s camera to take a series of 100 images (50 around the time of second contact and another 50 around the time of third contact). Because of some uncertainty about what exact feature (the first penetration of the solar crescent by a lunar mountain? the last ray of sunlight from the lowest valley at the limb?) corresponds to the published times of second and third contact, we deliberately chose to take images over a time interval spanning about 20 seconds either side of the published contact times. (Preliminary results from the 2024 April 8 eclipse show that this was overly conservative, and we will reduce the observing interval accordingly for future eclipses.)

Although the images are rather unspectacular, consisting of a few bright dots of light (Baily’s Beads) surrounding the lunar limb, it is the timing of the appearance and disappearance of these bright dots of light that provide the essential scientific information, and an ordinary phone is capable of timing each frame to an accuracy of a millisecond. With an eclipse shadow speed of about 2,000 mph (3,200 kilometers per hour, or about 1 kilometer per second), a timing accuracy of 1 ms represents a distance of about a meter, corresponding to about 400 m at the Sun. This is a superb level of accuracy.

2 Much of the coding for this first step was already present in a code written by Ideum, Inc., for the 2017 solar eclipse, and we are grateful to Jim Spadaccini of Ideum for sharing this code with us.
3 Besselian elements (named after the mathematician Friedrich Bessel) are a set of numbers that use the position of the Moon and the Sun to describe the circumstances of an eclipse as viewed by a hypothetical observer at the center of the Earth; with these numbers established, it is a relatively straightforward exercise in geometry to translate these to the circumstances for an observer at a given latitude, longitude, and altitude.

Testing the concept

Our research found a great deal of conflicting information about whether exposure to direct sunlight could damage a cell phone’s camera, so extensive beta-testing was carried out with various makes and models of phone, culminating in a beta-test during the 2023 October 14 annular eclipse at the University of Texas Permian Basin4 in Odessa, TX. These tests revealed that while exposure to direct sunlight could easily cause overexposure of images (and possible overheating of the phone), it did absolutely no damage to the phone’s camera.

A view of the third contact during the 2023 October 14 annular eclipse, taken at the Stonehenge replica on the UTPB campus in Odessa, TX, with a DSLR camera at 1/8000 second exposure time. Note the Baily’s Bead at 7 o’clock on the solar disk. Subsequent analysis allowed us to associate this bead with a prominent deep valley on the Moon’s limb, strongly validating the SunSketcher concept. Credit: Clinton Lewis/WKU. (Image was also used as the lead image in this NASA website article.)

Photographer Clinton Lewis accompanied the team on our trip to Odessa, and not only produced many images of the team at work, but also of the eclipse itself. Notable among these images was one taken at the time of third contact (Figure 1), showing a distinct Baily’s Bead lying approximately midway between the “horns” of the bright solar crescent at the other (uneclipsed) side of the Sun. This image was immediately termed the “Clinton Bead,” and formed the basis for a subsequent analysis in which we were able to identify the precise lunar valley (“Clinton Valley”) corresponding to it. More than any other evidence, the image of the Clinton Bead showed that the proposed methodology of SunSketcher was indeed very feasible.

The exposure time chosen for each image was 1/8000 second, which we determined to be sufficiently short to permit useful (unsaturated) images to be obtained without the use of a solar filter. Another image, with a significantly longer exposure time, is taken at mid-totality, when the circular ring at the base of the solar corona is visible. This central image is used to locate the Sun in the field of view of the camera, and a bounding box, large enough to accommodate the degree or so of diurnal drift during the 4 minutes or so of totality, is placed around this location. This bounding box is then used to crop each of the 101 images obtained, thus concentrating on the 5 kilobytes or so of scientifically valuable data. This reduced the amount of data that had to be transmitted from about a hundred megabytes per phone to less than a megabyte.

At the end of the observation period, the app shows the user all 101 photos taken and requests permission to upload them to a central server. Because of the substantial reduction in data content facilitated by the cropping of the images, the upload time is only about one second for all of the images taken from a single phone.

Many eclipse observers congregate in groups, and it was important that a phone did not simply duplicate the data from other phones in close proximity to it. To accomplish this, the app added or subtracted a random time, up to a quarter of a second, to the times of the images taken; with an eclipse shadow speed of about a kilometer per second, this added “jitter” corresponds to about plus or minus 200 m in phone location.

4 We thank the administration, faculty, and staff of UTPB for their hospitality during this beta testing, not to mention allowing us use of the Stonehenge monument replica on campus as a viewing location. Now there’s a place to see an eclipse!

The user interface

With the basic functionality of the code written, and successfully tested at the 2023 annular eclipse, the attention of the team turned to the more practical, legal, and aesthetic issues associated with its use by observers with no prior training. We added a short tutorial, covering matters such as how to point the phone camera and how to ensure an uninterrupted observing sequence. We employed focus groups to ensure the app was attractive and intuitively straightforward to use. Because the project involves the collection of data from phones belonging to a large number of members of the public, we also had to ensure compliance with legal issues such as user privacy. To avoid potential issues with different privacy laws in different countries, the app was made available only to phones belonging to a U.S. network.

Overall, the SunSketcher project involved tireless effort and commitment from a team of faculty and students representing disciplines ranging from computer science to art and design and even psychological sciences. There were countless highs and lows throughout the months of work. As we approached the day of the eclipse, everyone (and we mean everyone!) on the team knew that the astronomically imposed deadline was more absolute than any other project that they had before worked on, or would ever work on in the future.

Read Part 2 here to learn what happened on eclipse day! You can learn more about SunSketcher at http://sunsketcher.org/.

Featured image: Baily’s Beads in 2019 from La Silla, Chile (courtesy P. Horálek/ESO).

Celebrating Women’s Contributions to Atmospheric Sciences

By AMS President Anjuli S. Bamzai

I grew up in a family that valued intellectual pursuits, discipline, and the importance of women’s education—and was provided the support to make sure I received that education despite external social and cultural barriers. In the 1930s, when my mother was young, such values were uncommon outside of her family. My mother was the first woman in our community in the town of Srinagar, Kashmir, to receive a college degree, back in the late 1930s. She was followed by her younger sisters, one of whom went on to become the principal of the women’s college in town. Thus, I grew up with the important privilege of having strong women as role models.

As I entered the atmospheric sciences, one of the women who embodied the undaunted courage and determination in that generation of path-breakers was Dr. Joanne Simpson, the first U.S. woman to obtain a doctorate in meteorology, which she earned from the University of Chicago in 1949. In 1989 she became the first female president of the AMS. She researched hot towers and hurricanes, and was the project lead of the Tropical Rainfall Measuring Mission (TRMM) at NASA. While I never got a chance to meet Dr. Simpson, she was a beacon of inspiration.

I worked at the National Science Foundation under Dr. Rita Colwell—NSF’s first female director. An eminent biologist, she is recognized for her groundbreaking work on global infectious diseases such as cholera and their connection to climate. At an NSF holiday party during her directorship, I was astounded and inspired by the number of awards and honorary degrees on her office wall, from institutions all over the world! I admire her efforts in developing programs that support the advancement of women in academic science and engineering careers, such as NSF ADVANCE.

AMS President Anjuli S. Bamzai with a portrait of Dr. Joanne Simpson at AMS HQ (left), and with Dr. Rita Colwell (right). Images courtesy of Anjuli S. Bamzai.

This Women’s History Month, as I reflect about women pioneers who inspired me, I thought I’d share with you a few important figures from my mother’s generation and before. Their contributions have indeed made our field a richer place.

June Bacon-Bercey (1928–2019)

When June Bacon-Bercey went to UCLA, her adviser told her she should consider studying home economics, not atmospheric science. Considering that she’d transferred to UCLA specifically for its meteorology degree program, she didn’t believe this was good advice. We’re all lucky she followed her heart.

Bacon-Bercey graduated from UCLA in 1954, the first African American woman to obtain a bachelor’s degree in meteorology there, and early in her career worked for what is now the National Weather Service as an analyst and forecaster. Later, as a senior advisor to the U.S. Atomic Energy Commission, she helped us understand nuclear fallout and how atomic and hydrogen bombs affected the atmosphere.

In 1972, she became the first on-air African American female meteorologist, working for WGR-TV in Buffalo, New York (and soon after, became the station’s chief meteorologist). That same year, she was the first woman and first Black American to be given the AMS Seal of Approval for excellence in broadcast meteorology. In 1975, she co-founded the AMS Board on Women and Minorities, now called the Board on Representation, Accessibility, Inclusion, and Diversity (BRAID).

June Bacon-Bercey. Image: AMS.

June Bacon-Bercey was a truly multifaceted scientist: over the course of her life, she was an engineer, a radar meteorologist, and a science reporter. She established a meteorology lab at Jackson State University, created a scholarship with the American Geophysical Union, earned a Master of Public Administration, and even served as a substitute math and science teacher well into her 80s. Not only did she achieve so much personally, but she was instrumental in making atmospheric sciences more accessible to minorities and to women.

I’m grateful to her for leaving all of us at AMS such a rich legacy, and hope you are too! Her determination and foresight benefit us all to this day.

Anna Mani (1918–2001)

Despite growing up in the same city where Anna Mani worked at the India Meteorological Department, I learned of her immense contributions to the field only recently. She followed her passion to study meteorology at a time when it was uncommon for women to pursue science. Although it went unseen by many, Mani’s work was instrumental (literally) in advancing meteorological research in India. Anna Mani once said, “Me being a woman had absolutely no bearing on what I chose to do with my life.” 

Thwarted from studying medicine as a young woman, she developed a passion for physics, studied the properties of diamonds, and eventually earned a scholarship to study abroad, learning as much as she could about meteorological instruments. Returning to India just after the country’s independence, Mani played an important role in developing Indian-made weather and climate observing instruments, helping the country become more self-reliant. Her ozonesonde—the first developed in India—was created in 1964 and used by India’s Antarctic expeditions for decades; in the 1980s, these ozonesonde data helped corroborate the presence of the ozone hole in the Antarctic.

Anna Mani and colleague with a radiosonde. Image: World Meteorological Organization.

She eventually became deputy director-general of the India Meteorological Department. She also held multiple elected positions with the World Meteorological Organization related to instrumentation, radiation climatology, and more.

After (nominally) retiring in 1976, she spent the next few decades—almost till the end of her life—heading up a field research project unit assessing wind and solar energy resources. That work paved the way for many wind and solar farms across the country, advancing India’s leadership in renewable energy. How prescient her thinking was in terms of the need to move away from fossil fuels to renewable energy resources for the health of the environment!

Eunice Newton Foote (1819–1888)

By all counts, Eunice Foote was a remarkable woman. She was a dedicated women’s rights campaigner and suffragist, who attended the historic 1848 Seneca Falls Convention, helped publish its proceedings, and was among the first signatories on its Declaration of Sentiments.

In 1856 she was also the first person to demonstrate heat absorption by atmospheric gases and their potential climate impacts. Using a mercury thermometer inside glass cylinders, Foote found that the heating effect of the sun was greater in moist air than dry air, and highest of all for carbon dioxide. She even suggested that higher proportions of atmospheric CO2 could have caused warmer climates over the course of Earth’s history.

Yet the findings of a female amateur scientist—including the first non-astronomical physics paper published by an American woman—were ignored or dismissed by many at the time. Possibly unaware of Foote’s work, a few years later John Tyndall from Ireland wrote his seminal paper on the topic of atmospheric gases and solar radiation in 1861, and he was credited with the discovery of the greenhouse effect.

That didn’t stop Foote, who would publish another physics paper and produce several patented inventions including a temperature-controlled stove. Though she spoke out about women being forced to file her patents under their husbands’ names for legal reasons, she still filed three under her own name, including rubber shoe-inserts and a paper-making machine. As a scientist, inventor, and women’s right campaigner, Eunice Foote was a trailblazer in the true sense of the word. 

The Declaration of Sentiments of the Women’s Rights Convention in Seneca Falls, 1848. Eunice Foote’s name is fifth in the left-hand column. Image source: U.S. Library of Congress.

Women continue to break barriers!

Women, and especially women of color, still face barriers to equal participation and recognition within our fields. There are women whose names we *should* all recognize, but whose work has been buried, others whose ambitions may have been thwarted, or who are still struggling to be taken seriously. Whoever and wherever you may be, you can do your bit to help change that. By giving credit where it is due, we do right by each other and help make the meteorological ecosystem an attractive place to join, work, and collaborate in.

I would invite all of us to make a special effort to recognize the women we know who are making important contributions in Earth systems sciences—not just the ones who’ve already made a name for themselves, beating the odds. Mentor the early career scientists you know. Appreciate their talents and potential. Champion their careers. Consider nominating those you consider meritorious for AMS awards (including the Joanne Simpson Award and the June Bacon-Bercey Award!). If you’re part of the AMS community, consider following in the footsteps of June Bacon-Bercey by getting involved with BRAID’s efforts to make our field more welcoming for all who have a passion to be part it—including women, people of color, LGBTQ+ people, and those with disabilities. Or you might simply view and share this month’s AMS social media posts, celebrating women in our community. Happy Women’s History Month!

Anjuli is grateful to Katherine ‘Katie’ Pflaumer for providing useful edits as well as contributing material.

Changing Coasts and Culture

Image of wave washing over a rocky beach

AMS 2024 Session Highlight: “Convergence Science in the Context of Integrating Weather and Climate Science with Studies of Marine and Coastal Resources and Geophysical Processes”

By Isabella Herrera, AMS Policy Program

One of the most challenging parts of planning out my week at the AMS Annual Meeting was choosing which symposia and sessions to attend in person, and which to catch on my laptop after leaving Baltimore. Convergence Science: Indigenous Weather, Water and Climate Knowledge Systems, Practices, and Communities was one of the symposia for which I knew I wanted to bein the room where it happens.” In this case, “the room” was in the Baltimore Convention Center, and unlike many scientific and political discussions throughout the history of the United States, these discussions focused on Indigenous voices and the need for the scientific community to more meaningfully engage with Indigenous science and Native peoples. 

The symposium centered on the work of the Rising Voices Center for Indigenous and Earth Sciences (co-administered by NCAR|UCAR and the Livelihoods Knowledge Exchange Network), including the Rising Voices: Changing Coasts (RVCC) research hub. As Lead Investigator Daniel Wildcat said in an opening address for the symposium, RVCC is “catalyzing efforts to bring Indigenous knowledge holders [together] with some of the best university-trained [physical] scientists in the world … to model what convergence science looks like if you include Indigenous wisdom and knowledge.” A short film was played during the morning session to honor the late Dr. Heather Lazrus, Rising Voices co-founder, and her work with Rising Voices. 

A panel discussion during the symposium, Convergence Science in the Context of Integrating Weather and Climate Science with Studies of Marine and Coastal Resources and Geophysical Processes, featured a variety of speakers working at the various intersections of weather, water, climate, marine, and Indigenous science. Here are some of the experiences and perspectives shared during this session.

The Convergence of Science and Identity: Being Native in Scientific Spaces

Robbie Hood, a citizen of the Cherokee Nation and atmospheric scientist, started off the session describing her experience having worked for both NASA and NOAA, and mentioned that although she’d been to many AMS Annual Meetings throughout her career, this was her first time being able to represent herself as a Cherokee. Hood emphasized the immense opportunity of convergence science in practice.

“To me, it’s just science,” said Kekuʻiapōiula (Kuʻi) Keliipuleole, a Native Hawaiian and researcher at the University of Hawaiʻi. Native peoples’ knowledge of and connection to their lands is expansive, and deep, and intimate, Keliipuleole explained to us as she introduced herself by naming her mountain (Makanui), her waters (Wai‘ōma‘o and Pūkele), her rain (Lililehua), and her winds (Lililehua and Wai‘ōma‘o). She spoke about being a Native person who studies native organisms in their environment, in Hawaiʻi for Hawaiʻi, and the complexities of merging her identity of being Native and a scientist – of integrating “western” science into her culture.

Photo of Daniel Wildcat speaking in front of a screen on which is displayed the words, "Rising Voices, Changing Coasts: A new/old approach to convergence science. Speakers: Daniel Wildcat, Paulette Blanchard, Diamond Tachera, Kyle Mandli, Julie Maldonado." Two people are sitting in front of the screen while Dr. Wildcat is standing.
RVCC Lead Investigator Daniel Wildcat giving an opening address during the first session of the Convergence Science symposium, “Rising Voices, Changing Coasts: A New/Old Approach to Convergence Science.” Photo credit: Isabella Herrera.

“From when we are babies, we are learning this method of kilo [a Hawaiian word literally translated as “observations,” but with much deeper meaning in practice] … It’s being able to know the rains and the winds,” she said. “I could tell you that this one tiny section in a road over from my road is constantly flooding … because the government paved a road over an old spring … I see this [particular microbial mat], and I know that comes from groundwater, so I know that that was a spring because I have this kilo, this observational experience.”

Historically, Indigenous scientists have often had to navigate the supposed duality of their identities – of being a scientist and a Native person – and have not been able to include their Indigenous knowledge in their work in the same way they can with the science taught to them through academic institutions. The convergence of western scientific knowledge and Indigenous knowledge is integral to the future of the WWC enterprise.

Suzanne Van Cooten, a citizen of the Chickasaw Nation and Regional Administrator of the USGS South Central Climate Adaptation Center (SC CASC), highlighted the importance of inviting Tribal nations and other groups that have historically been dismissed from climate and water conversations to scientific spaces. She shared her enthusiasm about the first time she was able to forecast for her homelands as a hydrologist.

Respectful Engagement, Not Exploitation

“I think a lot of the Tribes kind of feel like they get talked at more than they get talked with.”

-Daniel Wildcat
Three people sit in front of a screen (their names are listed in the caption below). The screen is displaying the words, "Convergence Science in the Context of Integrating Weather and Climate Science with Studies of Marine and Coastal Resources and Geophysical Processes.
Speakers: Robbie Hood, Suzanne Van Cooten, Ku'i Keliipuleole, Carlos Martinez, Casey Thornbrugh."
(left to right) Speakers Carlos Martinez, Kekuʻiapōiula (Kuʻi) Keliipuleole, and Suzanne Van Cooten during the panel session. Photo credit: Isabella Herrera.

The session also featured discussions of how to go about entering Indigenous spaces from the world of western (or, as Van Cooten prefers to say, colonial) science.

Carlos Martinez, a climate scientist, AAAS Science and Technology Policy Fellow, and program coordinator for the National Science Foundation Coastlines and People Program (CoPe), also serves as a board member of the AMS Board of Representation, Accessibility, Inclusion, and Diversity (BRAID). He talked about his experience working with communities on convergence science.

“One of the things I have learned [is] knowing my place in the room … understanding that what I share is through my lived experiences, and not imposing what other people’s experiences are,” Martinez told us. 

A humble, listening approach is important for effective engagement, yet non-Indigenous groups often fail to employ this approach when entering Indigenous spaces. “I think a lot of the Tribes kind of feel like they get talked at more than they get talked with,” Daniel Wildcat said. “This is systemic.”

“When immersing in a space with convergence science in mind, [one thing I learned is] actively listening; for example … listening to what the communities are interested in learning, what their needs and concerns are, and then if willing, provide resources or information in communication with one another,” Martinez said. “I always take criticism and feedback as a way for growth, as a way that I can be … a better scientist and a better human being.” 

Non-Indigenous scientists should consider their intent versus impact when working with Indigenous communities. Historically, the scientific community has engaged with Indigenous peoples in a way that has been exploitative and continues to perpetuate colonialism, even if the work itself was initially intended to benefit those same communities. 

“If you want to work with Indigenous people, then you’ve got to change how you think about what that work requires,” Wildcat told us. 

Aspects of science and academia can become obstacles to building trusting relationships – something that is deeply important in working with Indigenous people. Most researchers and policymakers aren’t able to spend the time to establish meaningful and authentic relationships with the tribes they may want to work with, and appropriated dollars can’t be spent on food to host community gatherings. 

“[Working with Indigenous people] requires time, it requires meetings where you don’t have an agenda,” Wildcat explained. “You go meet with people, find out what they’re doing, find out what their issues are. . .and then [consider ways you] could assist.”

One of the main challenges Tribes face when it comes to federal funding opportunities, Van Cooten explained, is having the capacity to co-produce applications for funding and then administer the funds. Tribal leaders and program officers are already spread far too thin within their own communities to dedicate any more of their time applying for, let alone managing, large grants. “Yes . . . it’s a huge amount of money, but it will also take a huge amount of management. And so that capacity in the Tribe to manage that, with all the reporting, with everything that’s going to go along with that funding . . . they don’t have that.”

Many of the challenges faced by Tribal Nations are intersectional, and the approaches taken to address them must be, as well. This also rings true for challenges in weather, water, and climate science. Communication is key to both building meaningful relationships and to realizing the full potential of convergence science.

“It’s not much different than trying to put a weather forecaster in the same room with a weather researcher,” Hood told us. “. . .they talk a different language and they’ve got different metrics for what’s important, but if you give them that chance to talk, they’ll work it through. … We just need to open our minds and think about it from both points of view.”

A Change in Culture

These discussions made me consider the profound impacts that this shift in worldview could have on science and society as a whole.

Physical and biological sciences are intrinsically linked, and the need to integrate these two broad disciplines sparked the usage of the term “convergence science” in the first place. Does “western science” continue to limit itself by viewing the Earth and its systems (including biological systems) as entirely separate entities? How is that restriction reinforced by rigid academic and scientific institutions? How can we realize the full potential of convergence science (across various scientific disciplines, and across cultures and communities)?

As Keliipuleole told us, the scientific community “needs more of us to see the world the way that [Native people] see it, and not the way academia raised us to see it.”

There needs to be a culture change. There needs to be capacity building for and within Tribal Nations so that non-Indigenous scientists can engage with Indigenous science, and at universities and Tribal Colleges so students holding this Indigenous knowledge can be a part of the future of the scientific enterprise. There needs to be more of an effort to not just include but to amplify Indigenous voices in spaces like the AMS. The convergence of the western and Indigenous weather, water, and climate sciences must address the ongoing role of colonialism in modern scientific practices, and acknowledge the value of Indigenous science in and of itself.

As Van Cooten said at the start of the discussion:  

“[Science] should be inclusive to all communities, not just primarily those that have the loudest voice.”

Header photo credit: Isabella Herrera.

Recordings of all Convergence Science symposium sessions are available now to registered attendees of the AMS 104th Annual Meeting (log in and find each session through the online program). All recordings will be available to the public beginning three months after the meeting.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024 at the Baltimore Convention Center, the AMS 104th Annual Meeting explored the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions explored the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. Learn more at annual.ametsoc.org.

AMS 2024 Session Highlight: The Evolution of Observation: How the AMS Measurements Committee Can Better Serve the Community

A Town Hall at the AMS 104th Annual Meeting

With measurement techniques and systems rapidly evolving in response to a greater need for precise atmospheric and planetary surface observation, and technological advances allowing for observations of conditions where none were previously possible, there’s a growing need to engage our active AMS community to discuss the future of weather observing. That opportunity comes Thursday morning at a Town Hall by the AMS Committee on Measurements. Information will be presented regarding recent changes to the Committee, its current focuses, and plans for the future. Attendees at the AMS Annual Meeting this week in Baltimore are invited to participate in open discussion and provide feedback. Join us Thursday, 1 February at 12:15 p.m. U.S. Eastern for this session!

We spoke with the Town Hall’s organizer and speaker Andrew Schwartz of UC Berkeley to learn more.

What was the impetus for organizing this Town Hall Meeting?

Andrew Schwartz: We’ve had a lot of changes to our committee over the last several years and want to keep our community informed of what is occurring and what we’re planning. We also want to make sure that we’re accurately responding to the needs of our community and including them in our future activities.

What are some of the challenges that the Committee on Measurements hopes to address?

AS: We want to develop a better understanding of the community’s interests and needs to better guide our activities as a committee and develop more engaging content at our conferences and symposia.

What will AMS 104th attendees gain from the Town Hall?

AS: Attendees of the Town Hall will gain a better understanding of who comprises our committee, the work that we have been doing, and initiatives that we are working on for the future. They will also have the chance to provide feedback on our activities.

Featured image: Snowmageddon snowfall at Baltimore/Washington International Airport, taken February 6, 2010. Washington’s National Airport had 17.8″ while Dulles International Airport measured a whopping 32.4″ from the storm—the first of two intense East Coast snowstorms in less than a week. Image credit: NOAA.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024, the AMS 104th Annual Meeting is exploring the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions explore the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. The Annual Meeting is being held at the Baltimore Convention Center, with online/hybrid participation options. Learn more at annual.ametsoc.org

Be There: GATE 50th Anniversary Celebration

GATE observing network. (From Zhang et al., 2022.)

Fifty years ago this summer, the most ambitious tropical field experiment ever attempted began along the coast of West Africa. Amidst the backdrop of the Cold War, GATE—the Global Atmospheric Research Program’s (GARP) Atlantic Tropical Experiment—successfully involved more than 5,000 scientists, technicians, and supporting staff from 72 countries in a campaign over the Atlantic Ocean to investigate the structure of the tropical atmosphere with emphases on tropical convective organization and the mutual interaction between convection and the larger scale flow. This enormous achievement will be celebrated Thursday, 1 February, at the 104th AMS Annual Meeting in Baltimore with a Town Hall Meeting, a luncheon, and three scientific sessions.

CELEBRATION EVENTSLocation: Holiday Ballrooms 1-3 (Second Floor, Hilton Baltimore Inner Harbor)Times
Town HallThe GATE Experience and Beyond7-8 a.m.
SessionGATE 50th Anniversary Celebration I8:30-10 a.m.
Luncheon*GATE 50th Anniversary Luncheon12:15 – 1:30 p.m.
SessionGATE 50th Anniversary Celebration II1:45 – 3 p.m.
SessionGATE 50th Anniversary Celebration III4:30 – 6 p.m.
*The Luncheon is a ticketed event. Tickets are $65 and can be purchased through the Annual Meeting registration

The celebration includes GATE veterans who will share their experiences in planning and executing the field program, as well as speakers reflecting on how their careers were influenced by GATE and how other tropical field experiments followed GATE’s footprints to advance the science of tropical atmospheric convection and air-sea interaction. Visions for and planning of future tropical field experiments will also be discussed.

To learn more, we reached out to co-chairs Andrea M. Jenney of Oregon State University, Chidong Zhang of NOAA’s PMEL, and Terrence R. Nathan of UC Davis who provided the following responses.

What was the impetus for organizing this Town Hall Meeting and these sessions (aside from the 50th anniversary)?

To provide a platform for the Gaters (GATE veterans—only a few of them are still with us and they are in their 70s–90s) to tell the community how this historic field campaign was planned and executed, how it shaped the careers of the students and postdocs who participated, many of whom became leaders of our field, and how its impressive legacy continues to influence research today.

Who are the celebration events designed to attract and why?

Everyone, from the Gaters to current early career scientists who may have benefited from GATE but don’t know much about it.

What about the GATE observations make them an unmatched legacy in the atmospheric sciences?

It revolutionized our view of tropical deep convection from isolated hot towers to organized mesoscale systems.
The data have been used since to guide global model parameterization of atmospheric deep convection. It mobilized the international community to work together toward a common goal on an unprecedented and unsurpassed scale.

What has GATE taught us about conducting field research?

Political conflicts do not have to hinder scientists from working together. GATE took place during the Cold War, which left a substantial mark on it (GATE had to be relocated from the Pacific to the Atlantic). Nevertheless, scientists from both the East (including the USSR) and West came together, collaborated, and jointly conducted the field campaign.

Big science needs national and international collaborations and coordinations. No single funding agency or single country could support GATE on its scale. GATE has since remained as the grandest tropical field campaign in the atmospheric sciences ever.

Doing excellent science requires passions and fortitude. As the Gaters will attest to during this event, they went through tremendous hardships during GATE but they loved what they did and they met unanticipated difficulties with humor.

What will AMS 104th attendees gain from the town hall and sessions?

Some untold history of GATE. Many stories and personal reflections from the Gaters. How GATE inspired scientists of new generations. How the research community has continued the GATE legacy and is planning to visit the original GATE site in the Pacific that had to be abandoned because of geopolitics at that time.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024, the AMS 104th Annual Meeting is exploring the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions explore the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. The Annual Meeting is being held at the Baltimore Convention Center, with online/hybrid participation options. Learn more at annual.ametsoc.org

Be There: The Kuo-Nan Liou Symposium

Highlighting Key Sessions at AMS 2024

The Kuo-Nan Liou Symposium at the 104th AMS Annual Meeting will celebrate Dr. Kuo-Nan Liou (1943-2021), a giant in the field of atmospheric physics who made crucial contributions in the areas of atmospheric radiation, remote sensing, and the greenhouse impacts of clouds and aerosols. Liou (pictured at right, image courtesy of Penny Jennings), received numerous accolades during his career, including the AMS’s Carl-Gustaf Rossby Research Medal and Charney Award, and he was part of the Intergovernmental Panel on Climate Change team who received the Nobel Peace Price in 2007.

We asked Symposium Co-Chair Ping Yang, University Distinguished Professor and David Bullock Harris Chair in Geosciences at Texas A&M University, about the Symposium and Dr. Liou’s impact. Here are some of his answers:

Dr. Kuo-Nan Liou (image credit: Penny Jennings)

Why are the areas of Dr. Liou’s research so important to understand right now?

As one of the most accomplished atmospheric scientists in the world, Dr. Liou made seminal contributions to atmospheric and climate sciences in many areas, particularly in atmospheric radiation. His radiative transfer model has been widely used in weather and climate models and satellite remote sensing implementations, and thus plays a central role in determining the radiation budget of the earth-atmosphere system and cloud-aerosol-radiation interactions and feedback in a changing world.

Radiative transfer is important because almost all the energy that drives the Earth’s atmosphere and ocean currents originates from the sun. Therefore, the climate of the Earth-atmosphere system is mainly determined by the radiation balance at the top of the atmosphere and the surface since radiation is the only mechanism by which the Earth-atmosphere system gains or loses energy.

What can attendees expect from the Symposium?

This symposium honors the legacy of Dr. Kuo-Nan Liou by bringing together researchers to share knowledge, foster collaborations and address current challenges in the fields where Dr. Kuo-Nan Liou left a lasting impact. Attendees, both in-person and virtual, can benefit from gaining insights into the latest research and advancements in these areas. Session topics include “Interactions Among Climate, Radiation, Clouds, Aerosols, and Surface”, “Radiative Transfer Theory & Spectroscopy,” “Remote Sensing of Clouds, Aerosols, and Surface Properties,” and “Light Scattering and Applications.” The Symposium will provide a platform for networking and engaging with experts and a forum for disseminating cutting-edge research findings.

The Symposium will delve into the forefront issues within these research areas. Noteworthy presentation topics include the lidar remote sensing of snow depth and density, sub-millimeter-wave remote sensing of ice clouds, Tibetan Plateau snowpack loss and its connection to extreme events, and more.

The first session aligns with the central focus of the 2024 AMS Annual Meeting, “Living in a Changing Environment.” It features invited speakers Drs. Ruby Leung, Dennis Hartmann, V. Ramaswamy, Zhanqing Li, Jonathan Jiang, and Yongkang Xue. 

How did Dr. Liou influence the fields of atmospheric and climate science?

Dr. Liou’s work left a profound mark on the atmospheric and climate sciences due to his seminal contributions to radiative transfer, atmospheric optics, cloud-aerosol-radiation-climate interactions, and remote sensing. He was a pioneering researcher who demonstrated that atmospheric radiation should no longer be consigned to the fringes of meteorology, but instead should take a central place in the new world of climate science.

His book, “An Introduction to Atmospheric Radiation,” now in its second edition (with the first edition published in 1980), has been an invaluable resource for students and researchers around the world studying atmospheric radiation and its applications in climate science and remote sensing. Accepting the Rossby Medal in 2018, Prof. Liou talked about how his own early-career exposure to books like Chandrasekhar’s “Radiative Transfer” and Born & Wolf’s “Principles of Optics” spurred his innovations. For example, his simplified solutions for understanding solar and heat energy transfer problems, and his application of geometric optics to understand the scattering, absorption, and polarization properties of soot aerosols and irregular ice crystals.

He also humbly thanked his graduate students at the University of Utah and UCLA, saying, “They deserve to share, in equal measure, any recognition I have received, including this great honor from AMS.” We, the organizers of the Symposium, in turn are grateful to Dr. Liou. Along with his exceptional impact on the atmospheric sciences, he was a true role model as a leader and educator.

Kuo-Nan Liou receiving the Carl-Gustaf Rossby Research Medal at the 2018 AMS Annual Meeting and celebrating with his family, students, and colleagues. Photos provided by Liou Symposium co-chairs.

The Kuo-Nan Liou Symposium will be held Tuesday, 30 January, 2024 at the AMS 104th Annual Meeting, in Baltimore and online; it will feature invited presentations and a poster session, along with a special luncheon. Learn more about the Symposium and view the program.

What Do Non-Scientists Need to Understand about Peer Review?

Thoughts from AMS 2024 Editor’s Award Recipients

Peer Review Week 2023 logo

Understanding the role of peer review in science is vital not only for scientists themselves, but also for all of us who live in a society that relies on scientific research. Each September during Peer Review Week, AMS and other scholarly publishers highlight the essential role that peer review plays in scholarly communication.

In this first of two Peer Review Week posts, we’re hearing from some of AMS’s outstanding peer reviewers, recipients of the 2024 Editor’s Award, about what they think non-researchers need to understand about peer review.

At a basic level it is a check on, “do I believe the results presented here and the implications that are claimed?The check is made by other researchers working independently in the field. The checking of a single paper isn’t exhaustive, but there is an ongoing process—results and ideas established in one paper will, if they are of any significance, be re-examined and developed further in subsequent papers, which will themselves be peer reviewed.

Dr. Peter Haynes, Cambridge University
Dr. David Bodine

For non-researchers, I think it’s important to understand that peer review requires substantial effort … by volunteer reviewers, editors, and [the] scientists submitting manuscripts. A well-coordinated review process by all involved improves the quality and ensures the integrity of scientific research.

Dr. David Bodine, University of Oklahoma

Dr. Elizabeth Yankovsky

The peer review process is the only barrier standing between the writing of a scientific study and its publication. It is very easy for an unsubstantiated or erroneous paper to set an entire field back by years. In my opinion, the peer review process is as important as the research that goes into a given paper. … A given scientist may have one perspective and associated biases. Through peer review, the results are assessed by other scientists and are judged against the state of knowledge of the field. To push our boundary with the unknown forward, scientists must rely on both the historical backbone of their field as well as thorough review by their modern-day peers.

Dr. Elizabeth Yankovsky, New York University

Just because a paper was published after undergoing “peer review” does not make it absolutely correct or perfect, nor is it the final message on that idea. Unfortunately I feel the phrase “peer reviewed” is often used to imply some absolute consensus on a subject has been reached, when in reality it’s an ongoing, necessary criticism of the science that we do. As scientists we are constantly peer-reviewing each other’s work, and this may spark new, contrary ideas to be published that refute earlier findings.

Dr. Luke Madaus, Jupiter Intelligence
Dr. Sarah Buckland

Popular culture oftentimes misconstrues science in either the extreme of being purely political/agenda-driven or being the ultimate source of truth without question. The truth is, science is not ultimate, and understandings of processes and concepts are dynamic, and, as is especially evident in interdisciplinary research, scientists do have perspectives shaped by experiences. While I also cannot deny that bias exists in scientific fields and that contrasting perspectives may filter out at times, authentically anonymous and double-anonymous peer review processes (i.e., the reviewer not knowing the authors’ name(s)), act as guardrails to significantly reduce bias. [If] these processes remain clean and the selected reviewers are indeed experts in the field of the papers that they review, this significantly aids in ensuring that the end product is of the highest quality. The existence of these processes is why academic journals are deemed among the most credible sources of scientific information.

Dr. Sarah Buckland, University of the West Indies

Dr. Mimi Hughes

I think what I wish non-researchers understood about the scientific review process is how many eyes are on these papers before they’re published, and how that regularly improves the science and writing of the end-product. Most reviewers take the responsibility very seriously, and indeed are usually hesitant when they haven’t “found enough to fix” in a paper they review. It is typically a truly rigorous process.

Dr. Mimi Hughes, NOAA Physical Sciences Laboratory

Dr. Aaron Hill

I think non-researchers should know that peer review is only good and valuable when it is conducted from an unbiased position. It is vitally important that authors receive unbiased, external perspectives on their work in order to ensure that any gaps or misunderstandings can be addressed, and that the science is technically sound. Peer review is just ONE step in the scientific process as well, and sometimes bad work slips through the cracks of review. But peer review is a critical component to upholding and advancing science.

Dr. Aaron Hill, Colorado State University

Dr. Qiaohong Sun

Peer review serves as a crucial method for the scientific community to uphold the quality and credibility of scientific information accessible to the public. A paper passing peer review doesn’t guarantee absolute perfection, it indicates a level of examination and approval by experts in the field to some extent at the current time.

Dr. Qiaohong Sun, Nanjing University of Information Science and Technology

Dr. Sebastian Lerch

Peer review is a critical control mechanism in the scientific process. Mistakes can happen and may still get through the process. However, the collective nature of peer review and subsequent scrutiny by the scientific community help correct errors over time. This in particular highlights the importance of making research reproducible by publishing data and code.

Dr. Sebastian Lerch, Karlsruhe Institute of Technology

Dr. Andrew Feldman

It works! It is the main mechanism that keeps science reliable and transparent. Scientists respect and cite published work. In order to get science published, it needs to be read by 2-4 anonymous colleagues and editors and then revised. Even when it goes wrong and a paper is published with an error or not-well-supported argument, researchers are good at detecting this after the fact. It is a robust process that keeps the advancement of knowledge at a high-quality and transparent level.

Dr. Andrew Feldman, NASA Goddard Space Flight Center

When Wildfires Know No Boundaries, Scientists Must Cross Disciplines

The U.S. Capitol building viewed from afar during the wildfire smoke event on June 7, 2023. Photo courtesy of Natasha Dacic.

Takeaways from the AMS Summer Policy Colloquium

Guest post by Natasha Dacic, PhD Candidate at the University of Michigan

The western part of the United States continually suffers from wildfires and smoke every year, but in early June, regions of the Midwest and eastern parts of the country experienced unhealthy air quality as smoke from Canadian wildfires was transported into these regions. Cities like Washington, D.C., experienced some of the worst air quality levels in recent years. The smoke that engulfed the capital was a stark reminder that events like wildfires have far-reaching consequences.

I began to wonder if policymakers would be more attuned to the urgency for climate action now that the Nation’s Capital was experiencing some of the consequences that could become more prevalent in the near future. Coincidentally, I was in D.C. that week for the AMS Summer Policy Colloquium, and I had the opportunity to hear policymakers and federal officials comment on the wildfire smoke and how it pertains to the science policy they work on. 

As a scientist passionate about the intersection of climate and policy, the Summer Policy Colloquium was an enlightening experience for me. It brought together federal officials and Congressional staffers from various disciplines to discuss their career journeys, responsibilities, and pressing environmental issues. Several science policy experts commented on air quality and the broader implications of wildfires, recognizing that these are not isolated incidents but rather a component of a larger system affected by climate change and human activities, and not limited to a single country or region. Wildfires, driven by extreme heat, droughts, and other climate-related factors, have become increasingly common and devastating worldwide. 

In response to questions addressing the poor air quality, speakers emphasized the need for collaborative efforts between scientists, policymakers, and communities to tackle these complex challenges. The co-production of knowledge emerged as a theme throughout these discussions, and it quickly became evident that policymakers rely on expert knowledge and active participation of interested parties from various sectors in order to craft effective policy. This is one important way scientists can get involved.

Natasha Dacic (black shirt) and peers discussing policy issues at the AMS 2023 Summer Policy Colloquium. Photo: AMS staff.

As I listened to these conversations, I couldn’t help but reflect on my own work and the importance of co-production of knowledge in addressing environmental issues. I worked with a group of faculty and students in the Department of Climate and Space Sciences and Engineering at the University of Michigan to develop a pilot course to provide hands-on experience engaging with local communities. Many geoscience academic departments do not mandate this type of coursework–yet I believe that as scientists, it is essential for us to engage not only in research but also in the application of our knowledge. The Summer Policy Colloquium served as a reminder that we have a responsibility to communicate our findings to policymakers, advocate for evidence-based decision-making, and work hand in hand with communities affected by these environmental challenges.

The colloquium also highlighted the importance of academia and scientists being more active in applying their knowledge to real-world problems. While research and publication are important, they must be accompanied by active engagement with policymakers and communities to ensure that scientific findings translate into meaningful action. By actively participating in the policy-making process, scientists can contribute their expertise and help shape policies that address all aspects of science and more importantly, climate change.

Photo at top: The U.S. Capitol building viewed from afar during the wildfire smoke event on June 7, 2023. Photo courtesy of Natasha Dacic.


About the AMS Summer Policy Colloquium

The AMS Summer Policy Colloquium provides an overview of policy basics and decision-making in the earth and atmospheric sciences, along with opportunities to meet and dialogue with federal officials, Congressional staffers, and other decision-makers. Aimed at early and mid-level federal managers, scientists, private-sector executives, university faculty, and selected graduate students and fellows, the Colloquium helps participants build skills and contacts, gauge interest in science policy and program leadership, and explore selected issues in depth. View the 2023 SPC agenda here [PDF].

Careers’ Worth of Broadcast Conference Memories

Celebrating the 50th Conference on Broadcast Meteorology

The 50th AMS Conference on Broadcast Meteorology took place last week, 21-23 June 2023, in Phoenix, Arizona–more than six decades after the first Broadcast conference in Hartford, Connecticut, in 1956. The conference has been a source of cutting-edge information on the art and science of broadcasting the weather, encounters with industry greats, and collaborations that last lifetimes. To help celebrate, we asked several longtime broadcast meteorologists to share their memories with us, plus advice and insights on how the field has changed. The following is the first of three posts featuring their responses.

What are some of your memorable moments from past sessions of the Conference on Broadcast Meteorology?

“My first conference was in Boston in 1981. I remember sitting way in the back and feeling kind of lost and insignificant among all the legends around me. All of a sudden a hand was extended to me and I turned to my right. There sat Harry Volkman! Harry introduced himself and asked my name, and we had a very nice conversation. I never forgot how kind he was to a ‘kid’ weather-caster – Harry was always one of my heroes and someone I still try to emulate.

Today, I still keep that experience in mind when I meet young up-and-coming meteorologists. I hope that I might help inspire them to have a successful career.”

Mike Nelson, Denver7 Chief Meteorologist, KMGH, Denver, Colorado
Left two photos: Harry Volkman; right photo: Mike Nelson at KMOX in the 1980s. Photos courtesy of Mike Nelson.

“I’ve attended nearly every conference since ~1979. I was chair of the broadcast board [for the 1985 conference in Honolulu, Hawai’i], and Mike Smith from Wichita was program chair. Initial thought was that TV news directors would never permit their meteorologists to travel to Hawai’i. Were we wrong! We had record attendance. We programmed the day to start and very early – 7 a.m. to 1 p.m. or so, given people were mostly on Eastern/Central end time. In the afternoon, everyone was on their own to enjoy the island.”

Todd Glickman, Senior Director, Corporate Relations at MIT
Peter Leavitt, President of WSI Corporation, John Coleman, founder of The Weather Channel, and Bruce Schwoegler, Chief Meteorologist of WBZ-TV Boston, at the 15th Conference on Broadcast Meteorology in Honolulu, HI. Photo courtesy of Todd Glickman.
Evelyn Mazur, Director of Meetings at AMS, Brad Field from Hartford, Bill Kamal from Miami, Fred Gadomski of Penn State, and Ken Spengler, Executive Director of AMS, at the 15th Conference on Broadcast Meteorology in Honolulu, HI. Photo courtesy of Todd Glickman.
Photos from the 15th Conference on Broadcast Meteorology in Honolulu, Hawai’i, 1985. Top: Peter Leavitt, President of WSI Corporation, John Coleman, founder of The Weather Channel, and Bruce Schwoegler, Chief Meteorologist of WBZ-TV Boston. Bottom: Evelyn Mazur, Director of Meetings at AMS, Brad Field from Hartford, Bill Kamal from Miami, Fred Gadomski of Penn State, and Ken Spengler, Executive Director of AMS. Photos courtesy of Todd Glickman.

“My first AMS Broadcaster’s conference, and first presentation, was 50 years ago… 1973 at historic Cape Cod. The legendary Don Kent with his Boston accent was most kind with his comments.”

Joe Witte, Climate Outreach Specialist, Aquent, Pasadena, California

What’s been valuable to you about these conferences?

“AMS Broadcast conferences have given me knowledge, professional exposure, and lifelong friendships with like-minded people.”

Alan Sealls, AMS Fellow, CBM, Past Seal Board Chair; Chief Meteorologist at NBC15, WPMI-TV, Mobile, Alabama

“The AMS Broadcast Conference helps me stay up-to-date on the latest in the industry from both the meteorology side and the broadcast side. It’s a great opportunity to connect with my peers in the field and provides an excellent opportunity to learn from each other and experts in various genres of meteorology and climate.As the conference organizer one year, I learned valuable leadership, planning, and organizational skills.”

Lisa Spencer, Chief Meteorologist, News4, Nashville

“I have been broadcasting the weather in Montgomery, Alabama, for 45 years on TV and radio. I attended my first AMS Broadcast Conference in 1984 in Clearwater, Florida. Phoenix [was] my 25th broadcast conference. 25 out of 50. These conferences are so important to me. The learning process never ends. Also, the conference experience has shown me America. And each year I look forward to catching up with my fraternity of friends in this incredible business.”

Rich Thomas, Chief Meteorologist, Bluewater Broadcasting, Montgomery, Alabama

“The Broadcasters Conferences have provided numerous long-lasting memories and friends.”

Joe Witte, Climate Outreach Specialist, Aquent, Pasadena, California

“I attended my first AMS Broadcast Conference in 1993 Charleston, South Carolina, on the hunt for my first job as a broadcast meteorologist. Within a few weeks landed in Johnson City, Tennessee. My advice to all: network, network, and network!

I’ve gained so much from each conference. Presentations by experts on case studies and what was learned. New technology and its impact within the broadcast industry on what we do daily!

What I cherish the most: long-lasting friendships among colleagues. Each conference is a reunion. In some way we’ve all impacted each other in boosting confidence and in being challenged to deliver daily the best information in helping viewers plan and be safe!”

Yolanda Amadeo, Chief Meteorologist, WALB News, Albany, Georgia

(Left to right) Dr. Marshall Shepherd, Yolanda Amadeo, Janice Huff, and Alan Sealls. Photo courtesy of Yolanda Amadeo.

About 50Broadcast

The 50th Conference on Broadcast Meteorology took place in Phoenix, Arizona, June 21-23, 2023. It was organized by the American Meteorological Society Board on Broadcast Meteorology and chaired by Danielle Breezy and Vanessa Alonso. If you registered for the meeting, you can view presentation recordings here.

Header photos (clockwise from top left): Evelyn Mazur, Director of Meetings at AMS, Brad Field from Hartford, Bill Kamal from Miami, Fred Gadomski of Penn State, and Ken Spengler, Executive Director of AMS (photo courtesy of Todd Glickman). Yolanda Amadeo and Jim Cantore (photo courtesy of Yolanda Amadeo). Mike Nelson and Terry Kelly, 1979 (photo courtesy of Mike Nelson).

A Week in Washington for a Student Scientist

Photo: Haven Cashwell in front of the U.S. Capitol Building

Guest post by Haven Cashwell, PhD Student and Graduate Research Assistant at Auburn University

From my small hometown of Marshallberg in eastern North Carolina, and even my current home as a researcher and PhD student at Auburn University, the chambers of Congress have always felt like a different world. I had never even visited Washington, D.C., before, so truly I did not know what the policy world looked like. The recent AMS Summer Policy Colloquium opened these doors to me and showed that the pathway between research and policy isn’t as distant as I once thought.

The integration of science and policy has always intrigued me—such as policy for coastal resiliency, since my hometown of Marshallberg, NC is being impacted by climatic changes—but I was not aware of how that process worked. As I finish my PhD, I’m also exploring possible career paths that I could take after graduating. One aspect of my current research involves assessing and communicating climate and health risk factors with frontline communities in the Carolinas, which has made connections with the policy process feel even more pressing.

My mentor for an internship this summer is Dr. Kathie Dello, North Carolina’s state climatologist, who previously attended the colloquium and encouraged me to participate as well. After a week at the Colloquium, I left with lots of new knowledge and a much greater appreciation of how the policymaking process works.

For instance, I learned about the concepts of science for policy and policy for science, and how to navigate the two. Given my background in science communication, the idea of translating scientific evidence and research results to be usable and actionable (science for policy) felt very familiar, but I gained a new understanding of how policy affects funding that goes to different agencies for scientific research (policy for science). 

The 2023 AMS Summer Policy Colloquium cohort walking to Capitol Hill

Together with several dozen fellow scientists, I heard from professionals working in the policy world. They represented careers ranging from those having to do with the federal budget process to congressional staffers working directly with members of congress on science initiatives. I had no idea the options were so broad and varied. And far from the common perception that policy has to be dull, these speakers had great passion for their own work and a clear enthusiasm for sharing that with my peers and me.

We put our knowledge into practice in a legislative exercise that was sprinkled throughout the week. Participants were separated into groups and assigned to play the role of a senator marking up certain legislation. The goal was to get an understanding of how politics, policy, and procedure interact in the legislative process by creating amendments to bills and working together to create a significant piece of legislation. Much enthusiasm was shared among the participants at the end of the week when “voting” for the legislation, as the hard work throughout the entire week was put into practice. 

I left the Colloquium not only with a much better understanding of how science and policy can connect, but also with a new cohort with whom I networked throughout the week. Whether our careers keep us in the sciences or shift toward the world of policy, I’m excited for our paths to cross in the future and see how our experiences from this week in Washington shape our own work.

I would recommend attending the Summer Policy Colloquium to any young scientist who is interested in the policy process. By being better informed about how science and policy intersect, I’m now able to consider how my own research could fit in, whether it’s sharing how results from my research could influence policy or how to communicate and collaborate with policymakers in general.  

The 2023 AMS Summer Policy Colloquium cohort

Whether my future takes me back to small towns facing climate risks, leading research universities, or even a career in the policy sector, I know that the Summer Policy Colloquium has given me the tools and knowledge to be a more well-rounded researcher capable of connecting with the world of policy.

About the AMS Summer Policy Colloquium

The AMS Summer Policy Colloquium provides an overview of policy basics and decision-making in the earth and atmospheric sciences, along with opportunities to meet and dialogue with federal officials, Congressional staffers, and other decision-makers. Aimed at early and mid-level federal managers, scientists, private-sector executives, university faculty, and selected graduate students and fellows, the Colloquium helps participants build skills and contacts, gauge interest in science policy and program leadership, and explore selected issues in depth.