Wilder Weather: Data and Science in the Novel, The Long Winter

Even tall tales have their facts, but in historical fiction the myriad factual details often far outshine the story itself. In the ever popular books of Laura Ingalls Wilder, the telling details turn out to be the truly epic—and real—weather of the past. Barbara Mayes Boustead (University of Nebraska—Lincoln) and her coauthors show us in a recent BAMS article that Wilder’s, The Long Winter, isn’t just good history wrapped into a great novel–it’s also valuable climate data.

The cold, snowy season of 1880-81 featured in The Long Winter was strikingly difficult across much of the Plains and Midwest. A number of accounts have referred to it as the “Hard Winter” or “Starvation Winter.” Wilder’s story, set in De Smet, Dakota Territory (present-day South Dakota; 60 km west of Brookings), is fiction, but it contains many verifiable facts about the weather.

Clearing snowBoustead and co-authors Martha D. Shulski and Steven D. Hilberg set out to determine which parts of Laura’s stories are based in fact, and in the process, filled in the gap left by the absence of analysis or documentation in scientific literature about the Hard Winter of 1880-81. In the process, Boustead et al. show that the Hard Winter places recent severe winters, such as 2013-14, into context.

The winter began early, with a blizzard in eastern South Dakota and surrounding areas in mid October. Following a respite thereafter, wintry conditions returned by mid-November, followed by a number of snow and potential blizzard events in December. After a cold but relatively snow-free period, storm frequency increased from early January through February, producing snow almost daily in eastern South Dakota. In March, most days remained below freezing, though snowfall frequency decreased. Cold conditions continued into the first half of April. The BAMS article goes into detail describing why the winter of 1880-81 was so severe.

pAWSSIBAMS asked a few questions of Boustead to gain insight into her research. A sampling of answers are below:

BAMS: What would you like readers to learn from your article?

Barbara Mayes Boustead: Literature and other creative work can provide windows into past weather events and climates – including everything from documentary evidence to the impacts of those events on individuals and communities. We can connect those works to other historical weather data sources, from observations to reanalysis data, to reconstruct what occurred during these noted events, and why. By researching weather and climate related to a popular-interest subject like Laura Ingalls Wilder and the Little House stories, I have been able to reach audiences that otherwise might not have been so engaged, sparking interest in weather and climate by presenting it through Laura’s perspective.

BAMS: How did you become interested in investigating the weather of Wilder’s book?

Boustead_PhotoBarbara Mayes Boustead: The Long Winter research began over a decade ago as I reread the book as a “comfort read” on the tail end of a winter, reminding myself that even the longest winters do eventually end. I’ve been reading Laura Ingalls Wilder’s books since I was in elementary school, and I had always wondered if the winter was really as Wilder had described it. And then I got to thinking – I am a meteorologist, and I have the tools to look it up! The deeper I dug, the more that my questions led to more questions. I especially got excited as I found data that verified much of the weather that Wilder had described. And I knew I had found a resonant topic when I presented the work at a conference called LauraPalooza in 2010 (it’s real and it’s serious!) and was overwhelmed with questions and discussion following my presentation.

BAMS: What got you initially interested in weather and, more importantly, these novels?

Barbara Mayes Boustead: It seems that many meteorologists started with either a memorable event or a fear of a weather phenomenon. I was in the latter group, afraid of thunderstorms in my preschool years. My mother and sister took me to the library so that I could read books about weather, hoping that understanding would help me conquer fear. I had plowed through all of the books in the library in about a year, and I was hooked! As for my interest in Laura Ingalls Wilder, I can again thank my mom and books. She purchased Little House on the Prairie for me at a garage sale when I was in first grade and ready for chapter books. I turned my nose up at it, but she encouraged me to give it a chance. I did, and of course, Mom knows best – I was hooked and plowed through the rest of the book series, too.

BAMS: What surprised you the most in doing this research?

Barbara Mayes Boustead: Laura Ingalls Wilder was an excellent weather observer. Having researched the winter of 1880-81 extensively, as well as the rest of the identifiable weather and climate phenomena throughout the Little House books, I found that while many elements of the books were fictionalized, she recounted weather and climate events with great accuracy. Almost every weather or climate detail in her books really did occur and usually occurred just as she described it. She occasionally moved some timelines around, but the events themselves were spot-on.

BAMS: What was the biggest challenge you encountered in the research?

Barbara Mayes Boustead: There were times during my research that I would have gone to great lengths to obtain true snowfall measurements from one of the observing sites near the area of interest, or to fill in the spatial gaps. Snowfall data just don’t exist for the central U.S. in the early 1880s.

BAMS: What’s next?

Barbara Mayes Boustead: Research into the weather and climate of Laura Ingalls Wilder’s books and life continues as I work to document other weather and climate events from her other books and stories. Given the popular interest in Laura Ingalls Wilder, some of the research is and will be written for broader audiences, providing a window into the world of science (meteorology and climatology) for non-specialists by standing on the shoulders of Laura Ingalls Wilder’s storytelling and characters. What began as a side project has transitioned into decades worth of research and storytelling! Her books include everything from tornadoes and hail storms to blizzards, droughts to floods, extreme cold to extreme heat. There is fodder for research for years to come!

“Decision-making under meteorological uncertainty” for D-Day’s Famous Forecast

The success of the D-Day Invasion of Normandy was due in part to one of history’s most famous weather forecasts, but new research shows this scientific success resulted more from luck than skill. Oft-neglected historical documentation, including audio files of top-secret phone calls, shows the forecasters were experiencing a situation still researched and practiced today: “decision-making under meteorological uncertainty.”

New research recently published in BAMS into that weather forecast for June 6, 1944, which enabled the Allies in World War II to gain a foothold in Europe, answers questions about three popular perceptions: were the forecasts, which predicted a break in the weather, that good? were the German meteorologists so ill-informed, missing that weather-break? and was the American analog system for prediction so great and better than what the Germans had?

The “alleged” weather break

An expected ridge and fair weather between two areas of low pressure, one departing and one arriving over the area, didn’t materialize. The departing low instead lingered and created a lull in visibility and lifted the cloud ceiling height, but it didn’t slow winds much. They blew at Force 4-5 (~13-24 mph), creating very choppy seas that sickened many troops prior to the invasion.

Synoptic analyses at 00 UTC from 5 to 8 June 1944. The low that was supposed to move northeast to southern Norway remained over the North Sea for some days. On 6 and 8 June the observed winds in the Channel were force 4 and occasionally force 5.
Synoptic analyses at 00 UTC from June 5-8, 1944. The low that was supposed to move northeast to southern Norway remained over the North Sea for some days.

 

A blown German Forecast?

Because the invasion came as a complete surprise to the Germans it has been surmised their weather forecast for June 6 had to be bad. German forecasters prior to the war were the best at “extended” forecasts, and their synoptic maps and forecast for that day were more realistic than the Allies, with a less optimistic speculation of any break in the weather.

The German's European-Atlantic map at 00 UTC June 6, 1944, where the analysis over the North Atlantic appears not to be based on observations but intercepted American coded analyses.
The German’s European-Atlantic map at 00 UTC June 6, 1944, where the analysis over the North Atlantic appears not to be based on observations but intercepted American coded analyses.

 

A historically debated forecast

The analog weather prediction system employed by the Allies for the invasion was claimed by its creators to have correctly identified the weather break. But historical analysis and review doesn’t bear this out. What it does find, though, is that the system correctly identified a transition from zonal to meridional flow, which delivered the break the Allies needed for success. History’s finding: The forecast was “Overoptimistic.”

The 1984 Fort Ord meeting about the D-Day forecast got coverage in the local Monterey newspapers. The invasion was said to have occurred in a "break" or a period of a "brief lull" in the weather.
The 1984 Fort Ord, California, AMS meeting about the D-Day forecast got coverage in the local Monterey newspapers. The American forecasting group was led by Lt. Col. (Dr.) Irving Krick of Caltech. The president of the Naval Post Graduate School, Robert Allen, Jr., at the time an Air Force officer conducting high-level weather briefings at the Pentagon, also spoke at the meeting.

 

As a lesson learned from this most famous of weather forecasts, the paper’s author, Anders Persson of Swedin’s Uppsala University, concludes:

It was 75[+] years ago and the observational coverage has improved tremendously since then, both qualitatively and quantitatively. Our understanding of the atmosphere is much better,and the forecast methods have reached a standard that could hardly have been dreamt of in 1944. However, there’s one element that has a familiar ring to it and is of great interest today. That is when Air Marshall Tedder [Deputy Supreme Commander of the Invasion under General Eisenhower] asks about an assessment of the confidence in the forecast he has just heard … This illustrates that the D-day forecast is a significant early example of decision-making under meteorological uncertainty.

"Decision-making under meteorological uncertainty" for D-Day's Famous Forecast

The success of the D-Day Invasion of Normandy was due in part to one of history’s most famous weather forecasts, but new research shows this scientific success resulted more from luck than skill. Oft-neglected historical documentation, including audio files of top-secret phone calls, shows the forecasters were experiencing a situation still researched and practiced today: “decision-making under meteorological uncertainty.”
New research recently published in BAMS into that weather forecast for June 6, 1944, which enabled the Allies in World War II to gain a foothold in Europe, answers questions about three popular perceptions: were the forecasts, which predicted a break in the weather, that good? were the German meteorologists so ill-informed, missing that weather-break? and was the American analog system for prediction so great and better than what the Germans had?
The “alleged” weather break
An expected ridge and fair weather between two areas of low pressure, one departing and one arriving over the area, didn’t materialize. The departing low instead lingered and created a lull in visibility and lifted the cloud ceiling height, but it didn’t slow winds much. They blew at Force 4-5 (~13-24 mph), creating very choppy seas that sickened many troops prior to the invasion.

Synoptic analyses at 00 UTC from 5 to 8 June 1944. The low that was supposed to move northeast to southern Norway remained over the North Sea for some days. On 6 and 8 June the observed winds in the Channel were force 4 and occasionally force 5.
Synoptic analyses at 00 UTC from June 5-8, 1944. The low that was supposed to move northeast to southern Norway remained over the North Sea for some days.

 
A blown German Forecast?
Because the invasion came as a complete surprise to the Germans it has been surmised their weather forecast for June 6 had to be bad. German forecasters prior to the war were the best at “extended” forecasts, and their synoptic maps and forecast for that day were more realistic than the Allies, with a less optimistic speculation of any break in the weather.
The German's European-Atlantic map at 00 UTC June 6, 1944, where the analysis over the North Atlantic appears not to be based on observations but intercepted American coded analyses.
The German’s European-Atlantic map at 00 UTC June 6, 1944, where the analysis over the North Atlantic appears not to be based on observations but intercepted American coded analyses.

 
A historically debated forecast
The analog weather prediction system employed by the Allies for the invasion was claimed by its creators to have correctly identified the weather break. But historical analysis and review doesn’t bear this out. What it does find, though, is that the system correctly identified a transition from zonal to meridional flow, which delivered the break the Allies needed for success. History’s finding: The forecast was “Overoptimistic.”
The 1984 Fort Ord meeting about the D-Day forecast got coverage in the local Monterey newspapers. The invasion was said to have occurred in a "break" or a period of a "brief lull" in the weather.
The 1984 Fort Ord, California, AMS meeting about the D-Day forecast got coverage in the local Monterey newspapers. The American forecasting group was led by Lt. Col. (Dr.) Irving Krick of Caltech. The president of the Naval Post Graduate School, Robert Allen, Jr., at the time an Air Force officer conducting high-level weather briefings at the Pentagon, also spoke at the meeting.

 
As a lesson learned from this most famous of weather forecasts, the paper’s author, Anders Persson of Swedin’s Uppsala University, concludes:

It was 75[+] years ago and the observational coverage has improved tremendously since then, both qualitatively and quantitatively. Our understanding of the atmosphere is much better,and the forecast methods have reached a standard that could hardly have been dreamt of in 1944. However, there’s one element that has a familiar ring to it and is of great interest today. That is when Air Marshall Tedder [Deputy Supreme Commander of the Invasion under General Eisenhower] asks about an assessment of the confidence in the forecast he has just heard … This illustrates that the D-day forecast is a significant early example of decision-making under meteorological uncertainty.

Eight Decades: Mapping New England Catastrophe

Eighty years ago today (September 21st), the Great New England Hurricane of 1938 ripped across New York’s Long Island and slammed into the Northeast, killing more than 600 people and clawing its way across New England and the record books. Every hurricane to strike the region since is compared to this behemoth, and none has come close to its devastating intensity.

U.S. Weather Bureau surface weather map for 7:30 a.m. ET Wednesday, September 21, 1938.
U.S. Weather Bureau surface weather map for 7:30 a.m. ET Wednesday, September 21, 1938.

 
Ferocious winds gusting beyond category 5 intensity and an enormous storm surge that wiped out coastal Long Island and flooded into Rhode Island and Connecticut were its hallmarks. Copious rains also brought by the hurricane fell on soils swamped by heavy rain just days before the storm, leading to widespread flooding and thousands of landslides. Eight decades. And its imprint is still being realized.
Recently, new precipitation data on the storm and a precursor heavy rain event—now understood to be ubiquitous before New England hurricanes—were found. This precipitation map (right) newly appears in the 2nd edition of Taken by Storm 1938: a comprehensive social and meteorological history of the Great New England Hurricane, by Lourdes B. Avilés, professor of meteorology at Plymouth State University.
Precipitation observed during the Great New England Hurricane and its predecessor rain event. (U.S. Geological Survey)
Precipitation observed during the Great New England Hurricane and its predecessor rain event.
(U.S. Geological Survey)

 
The map was created by a grad student Avilés was advising—Lauren Carter—who painstakingly digitized thousands of observations from more than 700 daily weather stations Avilés had unearthed, spanning the 6-day event. This unique updated rainfall map is just one of many new and interesting finds detailed in the new edition of her book, which is now available in the AMS Bookstore. The book’s website houses supplemental information, including more color rainfall maps, detailed reports, and photos.

1871 Hawaii Hurricane Strike Shows Lane's Imminent Danger Isn't Unprecedented

Powerful Hurricane Lane is forecast to skirt if not directly hit Hawaii as a slowly weakening major hurricane today and Friday. Its track is unusual: most Central Pacific hurricanes either steer well south of the tropical paradise or fall apart upon approaching the islands. But a recent paper in the Bulletin of the AMS reveals that such intense tropical cyclones menace Hawaii more frequently than previously thought.
Hurricane Lane as of Thursday morning local time was packing sustained winds of 130 mph with gusts topping 160. Its expected track (below) is northward toward the middle islands today and early tomorrow, followed by a sharp left turn later Friday. When that left hook occurs will determine the severity of the impacts on Maui as well as Oahu, home to Hawaii’s capital and largest city, Honolulu. Although Lane is expected to slowly weaken due to increasing wind shear aloft, it appears that the Big Island of Hawaii, Maui, Molokai, and Oahu will be raked at a minimum by tropical storm winds gusting 55-70 mph, pounding surf, and heavy, potentially flooding rain. Hurricane conditions on these islands also are possible.

Three-day track forecast for Hurricane Lane's approach to Hawaii.
Three-day track forecast for Hurricane Lane’s approach to Hawaii (Central Pacific Hurricane Center).

The last major hurricane to affect the islands with more than swells and heavy surf was Hurricane Iniki in 1992. It was passing well south of the islands when an approaching upper-air trough brought in steering flow out of the south, and Iniki made a right turn toward the western islands while intensifying into a strong Category 4 hurricane. It slammed directly into the garden island of Kauai with average winds of 145 mph and extreme gusts that damaged or destroyed more than 90 percent of the homes and buildings on the island. Iniki obliterated  Kauai’s lush landscape, seen in its full splendor in such movies as Jurassic Park, which was filming there as the storm bore down.
The only other known direct hit on Hawaii was by 1959’s Hurricane Dot, which was a minimal Category 1 storm–the winds barely reaching threshold hurricane intensity of 74 mph when its center crossed Kauai. Without any prior record of major hurricane landfall, Iniki was not just rare, it was considered unprecedented.
Until now.
More than a century before Iniki, a major hurricane crashed into the Big Island, its intense right-front quadrant passing directly over neighboring Maui, causing widespread devastation on both islands. Its discovery is outlined in Hurricane with a History: Hawaiian Newspapers Illuminate an 1871 Storm, which details the narrative thanks to an explosion of literacy on the islands in the mid 19th century, which led to hundreds of local language newspapers that published eyewitness accounts of the storm.
Map showing the reconstructed track of the Hawaii hurricane across the eastern islands of Hawaii and Maui on 9 Aug 1871. Labeled red circles indicate the approximate time and location of the core of the storm. Green shading shows terrain altitude every 2,000 ft (610 m).
Map showing the reconstructed track of the Hawaii hurricane across the eastern islands of Hawaii and Maui on 9 Aug 1871. Labeled red circles indicate the approximate time and location of the core of the storm. Green shading shows terrain altitude every 2,000 ft (610 m).

The new historical research, published in the January 2018 BAMS, found unequivocal evidence of an intense hurricane that struck August 9, 1871, causing widespread destruction from Hilo on the eastern side of the Big Island to Lahaina on Maui’s west side. A Hawaiian-language newspaper archive of more than 125,000 pages digitized and now made publicly available along with translated articles contained account after account of incredible damage that led the paper’s authors to surmise that at least a Category 3 if not a Category 4 hurricane hit that day.
The paper’s analysis is put forth as “the first to rely on the written record from an indigenous people” of storms, droughts, volcanic eruptions, and other extreme natural events. Accounts published in Hawaiian newspapers create a living history of the 1871 hurricane’s devastation, as recounted in the paper:
“On the island of Hawaii, the hurricane first struck the Hāmākua coast and Waipi‘o valley. The following is from a reader’s letter from Waipi‘o dated 16 August 1871:”

At about 7 or 8 AM it commenced to blow and it lasted for about an hour and a half, blowing right up the valley. There were 28 houses blown clean away and many more partially destroyed. There is hardly a  tree  or  bush  of  any  kind  standing  in  the  valley (Pacific Commercial Advertiser on 19 August 1871).

“An eyewitness from Kohala on Hawaii Island wrote the following:”

The greatest fury was say from 9 to 9:30 or 9:45, torrents of rain came with it. The district is swept as with the besom of destruction. About 150 houses were blown down. A mango tree was snapped as a pipe stem, just above the surface of the ground. Old solid Kukui trees, which had stood the storms of a score of years were torn up and pitched about like chaff. Dr. Wright’s mill and sugarhouse, the trash and manager’s residence, were all strewn over the ground (Ke Au Okoa on 24 August 1871).

“On Maui, newspaper reports document that Hāna, Wailuku, and Lahaina were particularly hard-hit. A writer in Hāna described the storm:”

Then the strong, fierce presence of the wind and rain finally came, and the simple Hawaiian houses and the wooden houses of the residents here in Hāna were knocked down. They were overturned and moved by the strength of that which hears not when spoken to (Ka Nupepa Kuokoa on 26 August 1871).

“In Wailuku the bridge was destroyed:”

… the bridge turned like a ship overturned by the carpenters, and it was like a mast-less ship on an unlucky sail.” (Ka Nupepa Kuokoa on 19 August 1871).

“From Lahaina came the following report:”

It commenced lightly on Tuesday night, with a gentle breeze, up to daylight on Wednesday, when the rain began to pour in proportion, from the westward, veering round to all points, becoming a perfect hurricane, thrashing and crashing among the trees and shrubbery, while the streams and fishponds overflowed and the land was flooded (Pacific Commercial Advertiser on 19 August 1871).

The BAMS paper concludes that the 1871 hurricane was “a compact storm, similar to Iniki.” Honolulu escaped damaging winds or rain despite such a close encounter.
Because such historical records have been unnoticed for so long, the paper notes “a number of myths have arisen such as ‘the volcanoes protect us,’ ‘only Kauai gets hit,’ or ‘there is no Hawaiian word for hurricane.’”
Today’s powerful Hurricane Lane and the newfound historical records go a long way to dispelling these misconceptions about the threat of hurricanes in the Hawaiian Islands.
 

For Climate Science, Transitions Continue

The Inauguration of Donald Trump yesterday marked the end of the Transition. Yet, the end of the Transition with a big “T” marks the beginning of small “t” transitions for everyone else—political winners and losers alike.
According to Reed College historian Joshua Howe, climate science is particularly affected by such changes, absorbing and adapting to shifts in political winds for many decades. The continually transitioning relationship climate science has forged with politics—especially environmental politics—is chronicled in Howe’s book, Behind the Curve: Science and the Politics of Global Warming (Univ. of Washington Press, 2014).
As a past recipient of the AMS Graduate Fellowship in the History of Science, Howe presented the basics of his book at the 2009 AMS Annual Meeting. His dissertation was expanded into the book. In a recent interview at New Books Network (listen here), Howe explains how climate scientists have had to reinvent their approach to environmental advocacy. In Howe’s view, the approach politically active scientists took to triggering action on climate change simply didn’t work well, making the field ripe for further transition.
It was clear early on that climate change, as an environmental concern, was unprecedented in scale and complexity. Following on the debate in the 1970s over the nation’s Supersonic Transport program, atmospheric science had won a place at the environmental table. But environmentalists were used to dealing with local pollution and wilderness access—clear quality of life issues that resonated with their middle class constituency, Howe says. They were interested in concrete, simple, nontechnical issues they could rally around—and climate change was too complex to fit those parameters. Climate change wasn’t a low-hanging fruit ripe for political victories.
Meanwhile, the issue of nuclear winter provided a further, politically loaded impetus to the climate community, Howe said. But the result was a split, with some scientists becoming more politically outspoken within the environmental movement, while others became more entrenched within a conservative physical science community. As a result, the relationship of government funding to climate science became politically fraught.
Scientists initially reached out on climate change through the government agencies in the 1970s. Howe points out that “working within government bureaucracies left scientists vulnerable to political change.” The Carter administration shifted directions; Reagan then arrived with budget cuts and curtailed access to bureaucracy.
In response, many climate scientists sought a technical consensus that might force political action by the shear power of knowledge. The scientists attacking the problem in the 1970s onward had, as Howe puts it, a “naïve” attitude.
“Better knowledge, climate scientists believed, would lead to better policy,” Howe said in his 2009 AMS presentation. “Perhaps it is time for scientists to drop the false veil of political neutrality and begin discussing science and politics as two sides of the same coin.”
The AMS Annual Meeting in Seattle is an ideal opportunity to ponder the future of the atmospheric sciences during the next four years. Check out the Monday Town Hall on “Climate Change – How can we make this a national priority?” (12:15 p.m., Room 613). Then attend the panel session on priorities of the Trump Administration and Congress later that day (4 p.m., same room). The panelists include Ray Ban, Fern Gibbons, and Barry Lee Myers.

New AMS Book Remembers the Great New England Hurricane

It has been known by many names: the Yankee Clipper, the Great New England Hurricane, the Long Island Express . . . or simply the New England Hurricane of 1938. With fatalities estimated at between 500 and 700, it’s still the deadliest hurricane in modern New England history, and only Sandy last year was more costly (property damage from the ’38 storm amounted to almost $5 billion in 2013 dollars). Tomorrow is the 75th anniversary of the storm’s landfall as a Category 3 hurricane on Long Island, and to coincide with that occasion, the AMS has just released a new book about the event: Taken by Storm, 1938: A Social and Meteorological History of the Great New England Hurricane, by Lourdes B. Avilés. (To order the book, visit the AMS bookstore.) The first book to detail the science of the storm, it also delves into the Great Hurricane’s significant societal impacts. In the preface, Avilés discusses her motivation for writing the book:

My goal has not been to retell the story that has already been told, although there has to be some of that too, but to take a somewhat interdisciplinary approach to weaving together different aspects–different stories–of the 1938 Hurricane. This includes what happened before, during, and after the event, in the context of the meteorological history of the storm and its associated destruction and devastation; casualties, survival, and recovery in the affected population; environmental and geological changes caused by the storm; the science of hurricanes and of early-20th-century meteorology; and, finally, the added perspective of other intense hurricanes that have affected and no doubt will again affect the region.

AMS Director of Publications Ken Heideman, who wrote the foreword to Taken by Storm, 1938, recently talked to Avilés about the hurricane and her new book; the complete interview is below.
 

King's Dream Is "Tangible for Me:" Perspectives from a Scientist

by J. Marshall Shepherd, AMS President. Reprinted from The Mind of J. Marsh.
I had no intentions of writing anything about the Anniversary of my Alpha Phi Alpha fraternity brother Dr. Martin Luther King’s historic “Dream Speech” today. But as I sit here in the Tate Center of the University of Georgia eating breakfast and responding to emails from the Executive Director of the American Meteorological Society, a flood of realization came over me. Dr. King’s Dream is tangible for me and my career path.

King stated in 1963:

“I have a dream that one day little black boys and girls will be holding hands with little white boys and girls.”

I am one of those little black boys. I grew up in a small town north of Atlanta called Canton, Georgia. It is home and I cherish it. Yes, it had (and has) as any place does, pockets of hate and narrow thinking, but my experiences reflected the aforementioned quote. I went to school with, played S.W.A.T with, played sports with, and interacted with white and black kids. I eventually went on to be the first African American Valedictorian at Cherokee High School. I don’t make this point to brag. I make the point because it presents a dilemma in how I view it. On one hand, I feel proud to have achieved a goal and hopefully inspired someone else to strive to achieve academically. On the other hand, over 25 years later, I may still be the only person that looks like me to have given that speech. Indeed, times have changed but there is still room for me to continue to dream for my kids or for cousins that may aspire to similar goals at Cherokee High School. 

But, I want to reflect on my personal career trajectory as a projection of King’s Dream forward. 
I was blessed to be the first (and only) African American to receive a PhD in meteorology from Florida State University. This presents the same aforementioned dilemma. It’s too far past 1963 for these types of “firsts.”  After a successful career at NASA, I returned to my home state of Georgia and am now the Director of the Atmospheric Sciences Program and the Athletic Association Professor of Geography and Atmospheric Sciences at the University of Georgia. Only 2 years before Dr. King delivered his “Dream Speech,” the University of Georgia was integrated and allowed black students, and now I am teaching, advising and mentoring students of all races.

Another significant milestone and blessing came last year when my peers, the members of the American Meteorological Society (AMS, www.ametsoc.org), the largest and oldest professional society in my field, elected me to serve as President. To serve as the President of one of the more influential science organizations in this country is a privilege and honor. So back to the email I mentioned earlier from Dr. Keith Seitter, AMS Executive Director. I emailed Keith to inquire how many members of the AMS would have looked like me in 1963, the time of the “Dream” speech.  I guessed less than 10. Keith’s reply:


“Other than (Charlie) Anderson, I can only think of Warren Washington (not sure when he might have joined but probably close to then), and maybe June Bacon-Bercy (though she may have come on the scene closer to 1970), So, yes, almost surely less than 10, but probably not zero.” 

These numbers are not a reflection of the AMS, it is more of reflection of the times. However, in 2013, a relatively : ) young African American that has loved weather since 6th grade presides over this esteemed organization with contributions from all races, genders, and cultures. I am the 2nd African American to serve as AMS President. My mentor and recent National Medal of Science recipient, Dr. Warren Washington (https://www2.ucar.edu/atmosnews/news/2890/warren-washington-receives-national-medal-science), was the first. 
I owe many aspects of my career to the AMS and Warren Washington. I received one of the first AMS Industry Fellowships, have been afforded opportunities to lead and inspire within the organization, and have experienced the scholarly community of a first-class organization. Warren Washington invited me as a young scholar to spend a week with him at the National Center for Atmospheric Research (NCAR) and gave me sage advice that I carry with me to this day and try to pass along also. Blacks are still underrepresented in Science, Technology, Engineering, and Math (STEM) careers and my field is no exception. However, I offered some thoughts on how to overcome this in a recent Ebony.com article (http://www.ebony.com/career-finance/why-african-americans-may-be-left-out-of-the-21st-century-job-market-498#axzz2dGuk9Ktq). One of those suggestions is mentorship and I am grateful to Warren (another Alpha Fraternity brother, by the way) for life. I originally hesitated when approached to be put on the ballot for the AMS Presidency, but then I reflected on how I might inspire some boy or girl, irrespective of race.


There are so many other examples of my traceability to the Dream as the nation reflects on this anniversary, but I hope you see why I say that “I am one of those little black boys” in the Dream speech.

 
 

Remembering the Battle . . . and the Weather

As Gettysburg National Military Park commemorates the 150th anniversary of the momentous and bloody battle fought there (it took place July 1-3, 1863), we can look back and examine the role weather played in those three days of conflict (and AccuWeather already has, in this interesting post). This is possible thanks in large part to a local man, Rev. Dr. Michael Jacobs, who took weather observations three times a day, even as the fighting raged on around him. His notes, which can be seen here, show that temperatures were slightly below average for all three days, and that cloud cover was considerate much of the time. This benefited the soldiers, who would have been most uncomfortable in their wool uniforms during extreme heat and/or humidity. Late on July 3, a thunderstorm broke out, and it is testament to the ferocity of the battle that Jacobs noted the thunder “seemed tame” after the nonstop cacophony of gunfire that echoed throughout that afternoon.
As the battle wound down, the weather intensified, with rain falling throughout the day (a total of 1.39 inches, according to Jacobs) on July 4, the day after the combat had ended. The inclement weather turned out to be significant, as some wounded soldiers were still lying on the battlefield; tragically, those who were in low-lying areas drowned when the rainfall caused the Plum Run Creek to overrun its banks. The rains also added insult to injury for the retreating Confederate army–the dirt roads they traveled on rapidly became treacherous, and as they moved southward they were trapped for a period of time on the north side of the Potomac after the river swelled, making it temporarily impassible. They weren’t able to cross until July 13th.

UCAR Videos Bring the Past Back into Focus

For history buffs, YouTube is an incredibly addictive site. Are you a football fan? Maybe you’d like to watch some highlights from games played in 1976. More of a rock ‘n roll enthusiast? Check out the remastered version of the Beatles’ legendary appearance on the Ed Sullivan Show in 1964. But if you’re interested in the history of the atmospheric sciences, maybe you’ve been wondering where you can get your video fix. Now NCAR has the answer: their new YouTube channel. The channel is part of the NCAR/UCAR Archives, which has more than 70 collections in both paper and digital form. NCAR’s Kate Legg highlighted some of the organization’s digital archive highlights in Tuesday’s session on historical perspectives on weather.
The NCAR YouTube channel includes a number of 16-mm films made in the 1960s and 1970s, including scenes from various field projects and educational videos that Legg noted “remind her of film projectors and elementary school.” The channel currently has 30 videos, with new material added on a regular basis. The sample video below was made for the National Scientific Balloon Facility.