In recognition of National Hispanic Heritage Month (September 15-October 15), the American Meteorological Society is spotlighting the amazing careers and contributions of a few of our Latinx/Hispanic community members.
This week, we hear from Anthony Yanez!
What is your current work? Can you tell us a bit about it?
I recently became the Chief Meteorologist at KPRC 2, the NBC affiliate in Houston, Texas. This has been a long-time goal to reach, and it finally happened July 1st.
What was an important moment in your early career?
My career began in the sports department in my hometown of Albuquerque, New Mexico. After several years, I transitioned to the newsroom as a reporter and anchor. A pivotal moment in my career occurred when my boss saw a potential in me in another department. He said, “You have a better personality for weather. I’m moving you to the weather department.” His insight led me to discover a love for meteorology. Under the mentorship of Mike Hernandez, the chief meteorologist at the time, I received invaluable guidance that significantly shaped my career.
What is something you’re proud of professionally?
A highlight of my career was receiving the 2022 AMS Award for Excellence in Science Reporting by a Broadcast Meteorologist. My work in Los Angeles, covering wildfires, oceans, and climate issues, was both impactful and deeply fulfilling.
Are there ways in which your Hispanic/Latinx heritage has influenced or enriched your career?
As a Hispanic professional, I take pride in serving as a role model for the rapidly growing Hispanic community in the United States. During school visits, I make it a point to tell students that if I can achieve success, they can too. Additionally, my involvement with the Hispanic community in Houston, including serving as a past president of the Houston Association of Hispanic Media Professionals, enables me to support aspiring journalists by awarding college scholarships to deserving students.
A session highlight from the 51st Conference on Broadcast Meteorology/7th Conference on Weather Warnings and Communication
By Katie Pflaumer, AMS staff
The ocean looked aggressive. It was 6:45 a.m. on June 13 in Myrtle Beach, South Carolina, and my weather app was warning me about the possibilities of dangerous currents. A coastal hazard statement was in effect.
The waves—dark under early-morning cloud—pulled and crashed messily, much stronger than they’d been the day before. Some were coming in at an angle, bending southward down the beach. Whitecaps littered the water’s surface and the air was loud with the waves and wind.
Bruckner Chase was thrilled. “These are exactly the kinds of conditions we’re trying to teach you about,” he said.
I’d met up with him on the beach, along with his NOAA Wave Safe program colleagues Dr. Michelle Evans-Chase and Patrick Roach, other AMS staff, and several broadcast meteorologists who’d signed up for the “Blue IQ: Water, Waves, Weather and Coastal Safety” course at the 51st Conference on Broadcast Meteorology/Seventh Conference on Weather Warnings and Communication. It was an unusual meeting session, organized to help weather communicators—especially broadcast meteorologists—better engage with the public about beach safety.
What follows are a few takeaways from that morning, and from a later Weather Band webinar that recapped the session.
As we walked gradually towards the surf, our discussion focused on the three “zones” of ocean safety—the safe zone, the awareness zone, and the impact zone. There are important things to pay attention to in all three.
Safe Zone
The safe zone—far back from where any waves might reach—is a place to take inventory and get the lay of the land, as well as making sure you have all the supplies you may need.
Wait and Watch. The ocean, as Chase noted, is a constantly changing environment. The most important thing you can do is to pay attention. “Every beach is different [and due to tidal changes], that beach is also different from morning to afternoon,” said Chase during the webinar. “[If] you’ve got a sandbar that was under 3 feet of water and is now under 6 inches … now it’s become dangerous.”
Note any hazards (like piers or areas where waves are breaking strangely) and think about the height, direction, and roughness of the waves. Wind direction will impact wave behavior, and winds coming from the ocean or along the beach can make for more challenging conditions. Take time to observe what’s happening.
“Many people will look [at the waves] for a minute or two and go, oh, it’s fine. I watch the water 10 to 15 minutes at least, because waves will come in sets, conditions will change, it’s not always the same.”
—Bruckner Chase
Listen to the Experts. Lifeguards and surfers are often great sources for information about your beach. Always swim near lifeguards and pay attention to any signs or messaging about when and where you can swim safely.
Weather Aware. Conditions at the nearest weather reporting station may not reflect conditions at the coast. For example, in early summer, cold water and warm air can create dense fog right along the beach. “It can get to where you can’t see the shore,” said Michelle Evans-Chase. Weather communicators can help make their audience aware of these possible localized events.
Yet the general weather forecast is still important. If a storm is approaching, for example, people need to know to get out of the water and off the beach, as lightning can strike miles ahead of a storm.
Hazards and Tides. Your weather forecast office may also issue information about beach hazards. They had done so for Myrtle Beach today: strong longshore currents (running parallel to the beach) were highly likely, and rip currents (which can pull swimmers out towards the ocean) were moderately likely. Weather reports may also list the times of high and low tide, which can dramatically impact water conditions due to depth changes across sand bars or submerged hazards. Be careful around inlets when the tide is changing; strong tidal-driven currents may funnel through calm-appearing waters.
From our vantage point the day of the session, we could see signs of the longshore current scrambling the waves. Beach forecasts often include rip current risk, but longshore currents can also be very dangerous, sweeping you down the beach and making it hard to get back to shore. If you’re on a small beach surrounded by more challenging terrain, such a current could even drag you past the safe landing area. A final note on the safe zone: Make sure you know where it actually is. “Sneaker” waves—unusually large waves—may come much farther up the beach than expected. On rocky shorelines (common in the Pacific Northwest), these waves can pull people off the rocks into very cold water. The same can happen on piers and jetties. Even if a vantage point appears safe, heed any signage telling you not to go out there, and always pay attention to what’s happening in the water.
Awareness Zone
Once you walk closer to the surf, you’ll have a better sense of what your ocean experience will be like. When our little class left the area of the dunes, we were less shielded from the wind, and the waves seemed louder and taller than when we’d looked at them from above. Chase had us all lie down near the edge of the water, noting how large two- or three-foot waves can seem once you’re in them. Getting hit by even a smallish wave at the wrong angle can cause serious injury, so never underestimate surf.
“If … it’s your first trip to the beach, two feet doesn’t sound like much. … But a mass of water moving at you every six seconds that’s two feet high is a lot different and harder to navigate.”
—Bruckner Chase
Prepare to get in the water by orienting yourself. Line yourself up with a very specific landmark—pick something colorful and uniquely shaped that you can look back and easily identify (we used the water slide in front of our hotel). This is also important in an emergency, as EMS will need to know where to enter the beach to get to you.
Impact Zone
The impact zone, more technically known as the swash zone, is where waves are washing up on the sand and receding. This is where you’re getting into the water.
Be Prepared. Depending on water temperature, be prepared for a cold shock that could impact motor function. As Chase reminded us, “If you’re in a dangerous situation [and numb from the cold], you may lose the ability to effectively move out of it.” Be aware that the beach can drop off rapidly, and you could suddenly find yourself deeper than expected.
Move Efficiently. Chase outlined techniques for making efficient progress through the surf and conserving energy. Walking in sideways means less of your body has to fight through a wave. Diving underneath approaching waves can be another good way to make progress; things are much more peaceful under the water. Stick your fingers in the sand to make sure you go deep enough and to help you stay oriented.
Remain Calm. Chase’s techniques worked well, yet we all struggled to get out into waist deep water the morning of the session. The longshore current pulled relentlessly, and the waves—which hit us every few seconds as they piled up close to shore—made me grateful to be surrounded by trained lifeguards. Even with our feet mostly on the ground, we were soon swept 30-40 meters down the beach. If we’d gone out further, the currents might have made it hard to get back in.
If you’re caught in a rip current, standard advice is to swim perpendicular to the direction the current is moving you to escape this narrow, ocean flowing band of water (which will normally weaken once you get further out). Then, carefully swim at an angle towards the shore, always being aware of large waves that may be coming up behind you.
If you’re struggling in a longshore/long beach current, however, the best course of action is to head directly for the beach, which will be perpendicular to that current. Don’t worry too much about exiting the water exactly where you started—just get out where you can. Chase noted that while many people have heard what to do in a rip current, few are aware of the strength of longshore currents that can move you hundreds of yards or more along a beach.
Even if you’re a strong swimmer in the pool, don’t expect to feel equally strong and fast in the ocean, even on a calm day. “Most swimmers are going to have trouble navigating these dynamic conditions and feeling as comfortable in the surf as they do at their local swimming pool,” Chase told us. So the key thing to remember in a dangerous situation is: relax. Stay calm and use your energy tactically. “Give people time to come and help you, for the EMS system to be activated, for a lifeguard to come and find you.” If you see someone in trouble, take 10 seconds to alert a lifeguard or 911 and find productive ways to help. Watch the NOAA Wave Safe “Take 10” video.
No matter what beach you go to, the philosophy is, respect the ocean. “Even if you’ve been visiting the same beach for 10 years and you know that break and you’re comfortable sending your kids out there, one nor’easter or one storm can dramatically change that,” said Chase. “So it’s not just [that] each beach is different, which it very much is, but that beach can also change from hour to hour and definitely from year to year.”
Learn More
Share NOAA’s Wave Safe videos to help your friends and family, or the public at large, understand beach safety concepts.
The 51st Conference on Broadcast Meteorology and Seventh Conference on Weather Warnings and Communication took place in Myrtle Beach, South Carolina, on 12-14 June, 2024, hosted by the American Meteorological Society (AMS). The 51st Conference on Broadcast Meteorology is organized by the AMS Board on Broadcast Meteorology and invites broadcast meteorologists from across the United States to network and share professional knowledge. The Seventh Conference on Weather Warnings and Communication features cutting-edge research on weather communication strategies, challenges, and impacts, and is organized by the AMS Board on Societal Impacts.
I grew up in a family that valued intellectual pursuits, discipline, and the importance of women’s education—and was provided the support to make sure I received that education despite external social and cultural barriers. In the 1930s, when my mother was young, such values were uncommon outside of her family. My mother was the first woman in our community in the town of Srinagar, Kashmir, to receive a college degree, back in the late 1930s. She was followed by her younger sisters, one of whom went on to become the principal of the women’s college in town. Thus, I grew up with the important privilege of having strong women as role models.
As I entered the atmospheric sciences, one of the women who embodied the undaunted courage and determination in that generation of path-breakers was Dr. Joanne Simpson, the first U.S. woman to obtain a doctorate in meteorology, which she earned from the University of Chicago in 1949. In 1989 she became the first female president of the AMS. She researched hot towers and hurricanes, and was the project lead of the Tropical Rainfall Measuring Mission (TRMM) at NASA. While I never got a chance to meet Dr. Simpson, she was a beacon of inspiration.
I worked at the National Science Foundation under Dr. Rita Colwell—NSF’s first female director. An eminent biologist, she is recognized for her groundbreaking work on global infectious diseases such as cholera and their connection to climate. At an NSF holiday party during her directorship, I was astounded and inspired by the number of awards and honorary degrees on her office wall, from institutions all over the world! I admire her efforts in developing programs that support the advancement of women in academic science and engineering careers, such as NSF ADVANCE.
This Women’s History Month, as I reflect about women pioneers who inspired me, I thought I’d share with you a few important figures from my mother’s generation and before. Their contributions have indeed made our field a richer place.
June Bacon-Bercey (1928–2019)
When June Bacon-Bercey went to UCLA, her adviser told her she should consider studying home economics, not atmospheric science. Considering that she’d transferred to UCLA specifically for its meteorology degree program, she didn’t believe this was good advice. We’re all lucky she followed her heart.
Bacon-Bercey graduated from UCLA in 1954, the first African American woman to obtain a bachelor’s degree in meteorology there, and early in her career worked for what is now the National Weather Service as an analyst and forecaster. Later, as a senior advisor to the U.S. Atomic Energy Commission, she helped us understand nuclear fallout and how atomic and hydrogen bombs affected the atmosphere.
In 1972, she became the first on-air African American female meteorologist, working for WGR-TV in Buffalo, New York (and soon after, became the station’s chief meteorologist). That same year, she was the first woman and first Black American to be given the AMS Seal of Approval for excellence in broadcast meteorology. In 1975, she co-founded the AMS Board on Women and Minorities, now called the Board on Representation, Accessibility, Inclusion, and Diversity (BRAID).
June Bacon-Bercey. Image: AMS.
June Bacon-Bercey was a truly multifaceted scientist: over the course of her life, she was an engineer, a radar meteorologist, and a science reporter. She established a meteorology lab at Jackson State University, created a scholarship with the American Geophysical Union, earned a Master of Public Administration, and even served as a substitute math and science teacher well into her 80s. Not only did she achieve so much personally, but she was instrumental in making atmospheric sciences more accessible to minorities and to women.
I’m grateful to her for leaving all of us at AMS such a rich legacy, and hope you are too! Her determination and foresight benefit us all to this day.
Anna Mani (1918–2001)
Despite growing up in the same city where Anna Mani worked at the India Meteorological Department, I learned of her immense contributions to the field only recently. She followed her passion to study meteorology at a time when it was uncommon for women to pursue science. Although it went unseen by many, Mani’s work was instrumental (literally) in advancing meteorological research in India. Anna Mani once said, “Me being a woman had absolutely no bearing on what I chose to do with my life.”
Thwarted from studying medicine as a young woman, she developed a passion for physics, studied the properties of diamonds, and eventually earned a scholarship to study abroad, learning as much as she could about meteorological instruments. Returning to India just after the country’s independence, Mani played an important role in developing Indian-made weather and climate observing instruments, helping the country become more self-reliant. Her ozonesonde—the first developed in India—was created in 1964 and used by India’s Antarctic expeditions for decades; in the 1980s, these ozonesonde data helped corroborate the presence of the ozone hole in the Antarctic.
She eventually became deputy director-general of the India Meteorological Department. She also held multiple elected positions with the World Meteorological Organization related to instrumentation, radiation climatology, and more.
After (nominally) retiring in 1976, she spent the next few decades—almost till the end of her life—heading up a field research project unit assessing wind and solar energy resources. That work paved the way for many wind and solar farms across the country, advancing India’s leadership in renewable energy. How prescient her thinking was in terms of the need to move away from fossil fuels to renewable energy resources for the health of the environment!
Eunice Newton Foote (1819–1888)
By all counts, Eunice Foote was a remarkable woman. She was a dedicated women’s rights campaigner and suffragist, who attended the historic 1848 Seneca Falls Convention, helped publish its proceedings, and was among the first signatories on its Declaration of Sentiments.
In 1856 she was also the first person to demonstrate heat absorption by atmospheric gases and their potential climate impacts. Using a mercury thermometer inside glass cylinders, Foote found that the heating effect of the sun was greater in moist air than dry air, and highest of all for carbon dioxide. She even suggested that higher proportions of atmospheric CO2 could have caused warmer climates over the course of Earth’s history.
Yet the findings of a female amateur scientist—including the first non-astronomical physics paper published by an American woman—were ignored or dismissed by many at the time. Possibly unaware of Foote’s work, a few years later John Tyndall from Ireland wrote his seminal paper on the topic of atmospheric gases and solar radiation in 1861, and he was credited with the discovery of the greenhouse effect.
That didn’t stop Foote, who would publish another physics paper and produce several patented inventions including a temperature-controlled stove. Though she spoke out about women being forced to file her patents under their husbands’ names for legal reasons, she still filed three under her own name, including rubber shoe-inserts and a paper-making machine. As a scientist, inventor, and women’s right campaigner, Eunice Foote was a trailblazer in the true sense of the word.
Women continue to break barriers!
Women, and especially women of color, still face barriers to equal participation and recognition within our fields. There are women whose names we *should* all recognize, but whose work has been buried, others whose ambitions may have been thwarted, or who are still struggling to be taken seriously. Whoever and wherever you may be, you can do your bit to help change that. By giving credit where it is due, we do right by each other and help make the meteorological ecosystem an attractive place to join, work, and collaborate in.
I would invite all of us to make a special effort to recognize the women we know who are making important contributions in Earth systems sciences—not just the ones who’ve already made a name for themselves, beating the odds. Mentor the early career scientists you know. Appreciate their talents and potential. Champion their careers. Consider nominating those you consider meritorious for AMS awards (including the Joanne Simpson Award and the June Bacon-Bercey Award!). If you’re part of the AMS community, consider following in the footsteps of June Bacon-Bercey by getting involved with BRAID’s efforts to make our field more welcoming for all who have a passion to be part it—including women, people of color, LGBTQ+ people, and those with disabilities. Or you might simply view and share this month’s AMS social media posts, celebrating women in our community. Happy Women’s History Month!
Anjuli is grateful to Katherine ‘Katie’ Pflaumer for providing useful edits as well as contributing material.
In the third of three posts celebrating the 50th Conference on Broadcast Meteorology, we asked longtime broadcast meteorologists about what it means to do what they do, and their advice for others in the field.
What are some historic weather events you’ve covered, and what did you learn?
“It’s easy to joke with the news anchors and talk about a beautiful 75-degree day. But when severe or extreme weather approaches, the true essence of a broadcast meteorologist’s role is public safety. The first two weeks of 1999 was one of the harshest stretches of winter weather the Detroit area has ever seen, and I was out reporting live [when] people were struggling to get to work… [It was so cold] that roads salted the previous afternoon had an overnight refreeze … I cautioned people [that] if they were the first car at a stop light and it turned green, to pause a moment to make sure that nobody was skidding through the intersection before proceeding through. Later in the day, a viewer e-mailed to tell me that I had directly saved her life … that she was stopped at a light and, when it turned green, was about to hit the accelerator like normal, then remembered what I had said. She put her foot back on the brake. At that moment, a panel truck came barreling across the intersection from the left. Had she proceeded without pausing, she likely would have been broadsided and killed.
No matter if it’s a severe winter storm, thunderstorm, tornado, hurricane, flash flood, or any other significant natural hazard, our job as broadcast meteorologists is to take the viewers by the hand and help them make informed decisions that could save their lives. Nobody [else] in broadcast media has this responsibility on a daily basis. And there is no greater compliment than when somebody says ‘you saved my life.’”
Paul Gross, AMS Fellow, CCM and CBM
“There have been many historic weather events from Hurricanes Andrew, Fran, and Floyd to numerous tornado outbreaks in Middle Tennessee. The one event that stands out the most is the Great Flood of 2010 that impacted Tennessee with record rainfall totals and historic flooding. Interstates became raging rivers; neighborhoods were submerged in water and even downtown Nashville was flooded with several feet of water coving streets. Over 30 people lost their lives.
From all these events I have learned how much people in my community rely on me for critical information to help them prepare, survive and recover. It’s so important for me to deliver that information in a calm but urgent tone.”
Lisa Spencer, Chief Meteorologist, News4, Nashville, Tennessee
“The Barneveld F-5 Tornado in June 1984 was an early event that I covered. Nine people lost their lives in that terrible storm and it hit at 1 a.m. It had a major impact on me in terms of staying late into the night if necessary to issue warnings. In my St. Louis years, there were often times that I would stay after the late news to cover thunderstorm complexes and not get home until 5 a.m. In Denver, our thunderstorms tend to be in the afternoon and evening – but I have spent many nights here covering blizzards!
Most recently, we had a massive wildfire in December 2021 that destroyed nearly 6,000 buildings just south of Boulder, Colorado. The Marshall Fire was a huge firestorm caused in part by very warm and dry weather – related to climate change. I try to incorporate the climate change connection into my weather reports as often as possible.”
Mike Nelson, Denver7 Chief Meteorologist, KMGH, Denver, Colorado
What does being a Certified Broadcast Meteorologist mean to you?
“I find great value in the CBM program. I served on the committee to develop the seal program. In addition, I also helped develop the first test and testing guide.
When I see that someone has earned the CBM seal, I know that they have gone through a rigorous test to demonstrate their expertise in the field. Additionally, I am confident in their communication skills knowing their work has been reviewed by a group of experienced peers. CBM seal holders have gone the extra mile to make sure they are equipped to deliver critical weather and science information to their communities.”
Lisa Spencer, Chief Meteorologist, News4, Nashville, Tennessee
“I am CBM number 50, so I have had the designation for a while. The CBM represents the highest level of certification that the AMS can provide to a broadcast meteorologist and it should be held with high esteem. It takes a lot of work to achieve and should merit respect from the TV stations, networks and – most important – the viewer. As CBMs, we have a unique opportunity and responsibility to educate our viewers about weather, science and climate change.”
Mike Nelson, Denver7 Chief Meteorologist, KMGH, Denver, Colorado
What are some lessons you’d like to share with other broadcasters?
“Be active in the community, visit schools, answer all your email, educate the public about climate change. Also, the years go by faster than you will imagine – be sure to plan for your financial future as this business is not getting easier and will never pay as well as it did during my career (sorry)!”
Mike Nelson, Denver7 Chief Meteorologist, KMGH, Denver, Colorado
“Be yourself, be humble, stay focused, set goals and have fun!”
“From my over-35-year career as a broadcast meteorologist, I have learned the one thing you can count on is change… change in management at all levels, change in responsibilities, and change in the technology and the way we present the weather. But with all those changes we have to remember what we are there for… to serve our communities with the most accurate, informative weather information especially in critical times. When someone recognizes you in public and acts like they know you personally… that’s a good thing. You have made a connection and are welcomed in their home, on the TV or whatever device they are using to watch you. I try to always be gracious.”
Lisa Spencer, Chief Meteorologist, News4, Nashville, Tennessee
About 50Broadcast
The 50th Conference on Broadcast Meteorology took place in Phoenix, Arizona, June 21-23, 2023. It was organized by the American Meteorological Society Board on Broadcast Meteorology and chaired by Danielle Breezy and Vanessa Alonso.
Celebrating the 50th Conference on Broadcast Meteorology
We’re back with the second of three posts highlighting memories from longtime broadcast meteorologists, as we celebrate last month’s 50th Conference on Broadcast Meteorology! Today’s post highlights how the field of broadcast meteorology has evolved over the decades since these meteorologists started out.
“If you told me in 1983 at the beginning of my career that, forty years later, I would hold a portable little computer in my hand that dwarfs the computing capacity of what was in the spacecraft that took astronauts to the moon, watch live radar on that little computer, and then send personal messages with those radar images and warnings to large groups people in seconds, I would have laughed at you. Everybody talks about model and radar improvements that have occurred during this time period, but the development of instantaneous communication of weather information is mind-blowing and has truly benefited the public.”
Paul Gross, AMS Fellow, CCM and CBM
“During my first internship at WMC in Memphis in the early 1980s, the station was still using a magnetic surface map during their weathercast. Of course, now we use augmented reality graphics. Forecasting in the 1980s when I started my career consisted of large printed surface maps and spaghetti charts; we would use colored pencils to make analysis. Now everything is available online and from multiple sources.
“When I first started attending AMS Broadcast Conferences in the early 1990s, Bryan Busby (KMBC-TV) and I had a running joke where we greeted each other as “the other Black guy,” because we were the only two African-Americans there. I am thrilled to see the growth in diversity in our field and our conferences over the decades, to where we can’t say that anymore!”
Alan Sealls, AMS Fellow, CBM, Past Seal Board Chair
“I can remember having 5 p.m., 6 p.m., and 10 p.m. newscasts. I was responsible for one 3 ½-minute weathercast during each news show and maybe updating a phone line forecast. Now, I have a 3 p.m., 4 p.m., 5 p.m., 6 p.m., 6:30 p.m., and 10 p.m. newscasts with not only a generally 3-minute weathercast, but usually a first weather and teases. In addition, I am responsible for updating weather forecasts on a phone line, for radio, multiple social media platforms, the website and streaming service.”
Lisa Spencer, Chief Meteorologist, News4, Nashville, Tennessee
Photo courtesy of Lisa Spencer.
“I started in Seattle in 1971… the satellite images used on the air at KING-TV were single 4×5-inch B&W Polaroids taken at the local NWS office, a 10-minute drive downtown.
Stumping Bryan Gumbel and Jane Pauley with weather science on NBC’s TODAY in the ’80s was always fun, especially demonstrating the shape of rain drops by creating air bubbles in a 6-foot-tall clear plastic tube of Karo syrup (a sticky clean-up.)”
Joe Witte, Climate Outreach Specialist, Aquent, Pasadena, California
“I started my career at WKOW-TV in Madison, WI in 1976. … My first job was to erase the weather boards and help draw weather maps that would be used [by Terry Kelly, President of Weather Central, in his] weather reports. These maps were hand-drawn on lightweight cardboard and were then taped to the wall of the studio in a series of 5-6 maps. The cameraman (there were few women camera operators back then) would pan from left to right across the series of maps to help tell the story. If the masking tape let go, the map would fall to the floor – the viewers were certainly startled to see that! Making these maps took many hours and it was nearly impossible to change the map if the weather changed.
In 1979, Terry Kelly teamed up with some computer scientists at The UW Space Science and Engineering Department to create the Apple II Weather System which became one of the first TV Weather Computer Systems. … My job in the late 1970s through the mid-1980s was to travel around the country to install the various generations of these computers and train the meteorologists in this new technology. I installed over 50 units during this time and had the honor of meeting and training many of the legends of our industry such as Al Roker, Don Kent, Gary England, Bruce Schwoegler, Bob Copeland, Harry Volkman, Dick Albert, George Winterling, and Valerie Collins. It was truly an amazing time as the computer systems were rapidly changing and the competition between computer companies was intense!”
Right image: Mike Nelson with the Apple II Weather System. Photo courtesy of Mike Nelson.
Mike Nelson, Denver7 Chief Meteorologist, KMGH, Denver, Colorado
“[My] first TV job was with the old WGAN-TV in Portland, Maine, as the first meteorologist on staff… [It] entailed washing down the regional and national weather maps–floor-to-ceiling and made of linoleum, and covered with the tempera-marker info from the night before. Mop-and-bucket work was just part of the shift. Paper weather maps, magnetic suns and moons, and air-brushed clouds followed before actual digital graphics arrived.
As a broadcast meteorologist back then, one had to be proficient in more than forecasting. Changing out helixes in the fax machine, repairing the teletype (without sending 72 volts through your body), changing toner in the satellite receiver, and unending paper cuts were all part of your day.”
Dr. Lou McNally, Former President, AMS Boston Chapter
Dr. Lou McNally at WIVB in Buffalo, circa 1983, with magnetic baseman. Photo courtesy of Dr. McNally.
Photo at top of post: Mike Nelson, Terry Kelly, and Dr. Richard Daly in the Weather Central newsroom. Photo courtesy of Mike Nelson.
Celebrating the 50th Conference on Broadcast Meteorology
The 50th AMS Conference on Broadcast Meteorology took place last week, 21-23 June 2023, in Phoenix, Arizona–more than six decades after the first Broadcast conference in Hartford, Connecticut, in 1956. The conference has been a source of cutting-edge information on the art and science of broadcasting the weather, encounters with industry greats, and collaborations that last lifetimes. To help celebrate, we asked several longtime broadcast meteorologists to share their memories with us, plus advice and insights on how the field has changed. The following is the first of three posts featuring their responses.
What are some of your memorable moments from past sessions of the Conference on Broadcast Meteorology?
“My first conference was in Boston in 1981. I remember sitting way in the back and feeling kind of lost and insignificant among all the legends around me. All of a sudden a hand was extended to me and I turned to my right. There sat Harry Volkman! Harry introduced himself and asked my name, and we had a very nice conversation. I never forgot how kind he was to a ‘kid’ weather-caster – Harry was always one of my heroes and someone I still try to emulate.
Today, I still keep that experience in mind when I meet young up-and-coming meteorologists. I hope that I might help inspire them to have a successful career.”
Mike Nelson, Denver7 Chief Meteorologist, KMGH, Denver, Colorado
“I’ve attended nearly every conference since ~1979. I was chair of the broadcast board [for the 1985 conference in Honolulu, Hawai’i], and Mike Smith from Wichita was program chair. Initial thought was that TV news directors would never permit their meteorologists to travel to Hawai’i. Were we wrong! We had record attendance. We programmed the day to start and very early – 7 a.m. to 1 p.m. or so, given people were mostly on Eastern/Central end time. In the afternoon, everyone was on their own to enjoy the island.”
Todd Glickman, Senior Director, Corporate Relations at MIT
“My first AMS Broadcaster’s conference, and first presentation, was 50 years ago… 1973 at historic Cape Cod. The legendary Don Kent with his Boston accent was most kind with his comments.”
Joe Witte, Climate Outreach Specialist, Aquent, Pasadena, California
What’s been valuable to you about these conferences?
“AMS Broadcast conferences have given me knowledge, professional exposure, and lifelong friendships with like-minded people.”
Alan Sealls, AMS Fellow, CBM, Past Seal Board Chair; Chief Meteorologist at NBC15, WPMI-TV, Mobile, Alabama
“The AMS Broadcast Conference helps me stay up-to-date on the latest in the industry from both the meteorology side and the broadcast side. It’s a great opportunity to connect with my peers in the field and provides an excellent opportunity to learn from each other and experts in various genres of meteorology and climate.As the conference organizer one year, I learned valuable leadership, planning, and organizational skills.”
Lisa Spencer, Chief Meteorologist, News4, Nashville
“I have been broadcasting the weather in Montgomery, Alabama, for 45 years on TV and radio. I attended my first AMS Broadcast Conference in 1984 in Clearwater, Florida. Phoenix [was] my 25th broadcast conference. 25 out of 50. These conferences are so important to me. The learning process never ends. Also, the conference experience has shown me America. And each year I look forward to catching up with my fraternity of friends in this incredible business.”
“The Broadcasters Conferences have provided numerous long-lasting memories and friends.”
Joe Witte, Climate Outreach Specialist, Aquent, Pasadena, California
“I attended my first AMS Broadcast Conference in 1993 Charleston, South Carolina, on the hunt for my first job as a broadcast meteorologist. Within a few weeks landed in Johnson City, Tennessee. My advice to all: network, network, and network!
I’ve gained so much from each conference. Presentations by experts on case studies and what was learned. New technology and its impact within the broadcast industry on what we do daily!
What I cherish the most: long-lasting friendships among colleagues. Each conference is a reunion. In some way we’ve all impacted each other in boosting confidence and in being challenged to deliver daily the best information in helping viewers plan and be safe!”
Header photos (clockwise from top left): Evelyn Mazur, Director of Meetings at AMS, Brad Field from Hartford, Bill Kamal from Miami, Fred Gadomski of Penn State, and Ken Spengler, Executive Director of AMS (photo courtesy of Todd Glickman). Yolanda Amadeo and Jim Cantore (photo courtesy of Yolanda Amadeo). Mike Nelson and Terry Kelly, 1979 (photo courtesy of Mike Nelson).
Officially, the Atlantic season is almost upon us. The season of tropical storms and hurricanes, yes, but more to the point, the season of heat-seeking machines and relentless monsters.
At least, that’s the metaphorical language of broadcast meteorologists when confronted with catastrophic threats like Hurricane Harvey in Houston in 2017. A new analysis in BAMS of the figures of speech used by KHOU-TV meteorologists to convey the dangers of this record storm shows how these risk communicators exercised great verbal skill to not only connect with viewers’ emotions, but also convey essential understanding in a time of urgent need.
For their recently released paper, Robert Prestley (Univ. of Kentucky) and co-authors selected from the CBS-affiliate’s live broadcasts during Harvey’s onslaught the more than six hours of on-air time for the station’s four meteorologists. The words the meteorologists used were coded and systematically analyzed and categorized in a partly automated, partly by-hand process. No mere “intermediaries” between weather service warnings and the public, the meteorologists—David Paul, Chita Craft, Brooks Garner, and Blake Matthews—relied on “figurative and intense language” on-air to “express their concern and disbelief” as well as explain risks.
As monster, the hurricane frequently displayed gargantuan appetite—for example, “just sitting and spinning and grabbing moisture from off the Gulf of Mexico and pulling it up,” in Paul’s words. The storm was reaching for its “food,” or moisture. The authors write, “The use of the term ‘feeder bands’…fed into this analogy.” Eventually Matthews straight out said, “We’re dealing with a monster” and Craft called the disaster a “beast.”
When the metaphor shifted to machines, Harvey was like a battery “recharging” with Gulf moisture and heat or a combustion engine tending to “blow” up or “explode.” Paul noted the lingering storm was “put in park with the engine revving.”
Other figurative language was prominent. Garner explained how atmospheric factors could “wring out that wet washcloth” and that the saturated ground was like “pudding putty, Jello.” The storm was often compared to a tall layered cake, which at one point Garner noted was tipped over like the Leaning Tower of Pisa.
In conveying impact risks, the KHOU team resorted frequently to words like “incredible” and “tremendous.” To create a frame of reference, they initially referred to local experience, like “Allison 2.0”—referring to the flood disaster caused by a “mere” tropical storm in 2001 that deluged the Houston area with three feet of rain—until Harvey was clearly beyond such a frame of reference. Then they clarified the unprecedented nature of threats, that it would be a storm “you can tell your kids about.”
The authors note, “By using figurative language to help viewers make sense of the storm, the meteorologists fulfilled the “storyteller” role that broadcast meteorologists often play during hurricanes. They were able to weave these explanations together with contextual information from their community in an unscripted, ‘off-the-cuff’ live broadcast environment.” They conclude that the KHOU team’s word choices could “be added to a lexicon of rhetorical language in broadcast meteorology” and serve as a “a toolkit of language strategies” for broadcast meteorologists to use in times of extreme weather.
Of course all of this colorful language was, perhaps, not just good science communication but also personal reality. Prestley et al. note: “The KHOU meteorologists also faced personal challenges, such as sleep deprivation, anxiety about the safety of their families, and the flooding of their studio. The flood eventually forced the meteorologists to broadcast out of a makeshift studio in a second-floor conference room before evacuating their building and going off air.”
As water entered the building, Matthews told viewers, “There are certain things in life you think you’ll never see. And then here it is. It’s happening right now.”
You know the perception: It never rains in Southern California, so forecasting the weather there is easy. Not so fast, says Anthony Yanez of KNBC TV in Los Angeles.
In his recent presentation at the 47th Conference on Broadcast Meteorology in San Diego, titled “Forecasting Southern California: Not as Easy as you Think,” Yanez takes a lighthearted yet very serious look at the myriad weather and other natural phenomena that threaten the state every year. These include heavy flooding rains, high winds, wildfires, mudslides, earthquakes, and hail. As station scientists, Southern California weather broadcasters must cover them all for viewers, and well. “I think that the science is a lot more … cuz everyone thinks the weather’s boring … when we do science, they love that. And they eat it up.”
You know the perception: It never rains in Southern California, so forecasting the weather there is easy. Not so fast, says Anthony Yanez of KNBC TV in Los Angeles.
In his recent presentation at the 47th Conference on Broadcast Meteorology in San Diego, titled “Forecasting Southern California: Not as Easy as you Think,” Yanez takes a lighthearted yet very serious look at the myriad weather and other natural phenomena that threaten the state every year. These include heavy flooding rains, high winds, wildfires, mudslides, earthquakes, and hail. As station scientists, Southern California weather broadcasters must cover them all for viewers, and well. “I think that the science is a lot more … cuz everyone thinks the weather’s boring … when we do science, they love that. And they eat it up.”
The largest biographical study to date of TV meteorologists shows some disturbing disadvantages for women in the profession. You can hear Alexandra Cranford, the author of that study, discuss the study on the latest episode of our podcast, AMS on the Air.
Cranford, who is an AMS Certified Broadcaster with WWL-TV in New Orleans, made an exhaustive survey of online information for more than 2,000 weathercasters. She focused on the relation between her colleagues’ professional status and education. The results, which formed the basis of her BAMS article, show women meteorologists have made gains on local TV, yet are not proportionately well represented in the most prominent and prized positions on local stations.
For example, women are much more likely to be on TV during daytime, mornings, and weekends, than on prime time slots:
And they are far less likely to be chief meteorologist for their station:
In the podcast interview, she speculates on some of the reasons for these findings.
Perhaps when a hiring manager is interviewing a man versus a woman as a weathercaster, they are looking at slightly different criteria….Another thing is, maybe women are choosing for some reason…perhaps to work maybe weekends and mornings. Maybe women are staying away from those chief positions for some reason. I have no idea if this is the case—I’m just throwing out ideas here—but…possibly due to family reasons or personal preference. That could maybe be another thing.
Also, women may choose to exit the industry earlier in their careers, so that leaves a pool of mainly older, more experienced, mainly males to fill those chief spots, which are typically filled by an older, more experienced person.
And then, one of the reviewers of my study brought my attention to the effect that all of us think about—but how much of a real effect might it have?—the effects of criticisms of consultants and social media and so forth. We all know about the internet trolls. Anyone who works as a TV weathercaster, I’m sure has gotten emails from viewers….That’s a very real thing too. There is research that suggests maybe that’s a bit worse for females versus males. Maybe that can play a role as well.
Listen to the whole interview on the AMS website or on your favorite podcast app.