Getting to Know You: Anjuli S. Bamzai, AMS President

Anjuli Bamzai

Anjuli Bamzai took up the position of AMS President January 28, 2024, at the 104th Annual Meeting of the American Meteorological Society. In her day job, she is a Senior Science Advisor on Global Climate Change in the Directorate for Geosciences at the National Science Foundation (NSF). She has also worked for the National Oceanic and Atmospheric Administration’s Office of Atmospheric and Oceanic Research and the Department of Energy’s Office of Science. Dr. Bamzai has served as an Embassy Science Fellow in Seoul, South Korea, and Cairo, Egypt; as the U.S. Government reviewer for the IPCC AR4; and on the National Climate Assessment and Development Advisory Committee for the third National Climate Assessment. Among other degrees, she has earned PhDs from George Mason University and the Indian Institute of Technology. Read her bio here.

We spoke with our new AMS President about her history, influences, and what to expect at next year’s Annual Meeting in New Orleans!

You have a physics/math background; what drew you to the applied/atmospheric sciences?

In 1927, my maternal grandfather received a scholarship from the then Maharaja of Kashmir to study civil engineering at Harvard University. He was inducted to Tau Beta Pi in 1929. He returned to Kashmir, and rose to be the chief engineer of the state—quite an influential person in his own right in terms of planning and building the infrastructure in the region in the 1930s–50s. Growing up, he was a big influence in our lives in terms of discipline, rigor and the value of education. He actively encouraged his daughters, and later his granddaughters, to pursue higher education. As I entered college, meteorology was not uppermost on my mind; I was fascinated by physics, although of course, meteorology could be considered as physics applied to the atmosphere, ocean, and other Earth System components. All along I was interested in the environment, particularly the upper atmosphere; in the 1980s and 90s ozone stratospheric chemistry received huge attention. The Montreal Protocol was signed in 1989 and decades later, we are reaping the benefits and witnessing the healing of the ozone layer. 

As for weather-related childhood experiences, in 1961 when I was in elementary school there was disastrous flooding in the city of Pune, which was close to the town we lived in. Incessant rains for a couple of weeks caused the Panshet dam to burst due to a breach in the construction of its wall; waters fed into Khadakwasla dam that breached as well.  

I remember that day vividly. They let us out of school early; they said the dam had burst and there was flooding. We thought we’d go back home and find our homes just gone. Turned out Khadakwasla where I lived was on higher ground. We could see the breach in the second dam and red, muddy waters of those floods … moving toward the city of Pune and its hapless residents who were caught completely off guard. We had no school for several weeks. A lot of people in Pune faced a lack of drinking water, most of the bridges were destroyed. Several decades later, on my first day at NSF, I met the program director in Hydrological Sciences, Doug James. When he learnt I had lived in Pune, he asked me about the floods. I discovered he had actually come to Pune to study this rainfall event with colleagues at the Central Water Research Institute. It was an outlier event not just in my memory, but for the city and researchers across the globe like Doug!

You often talk about the value of inclusivity in the weather-water-climate enterprise. What are some of the challenges we face in that respect, and how can AMS help?

It’s about creating a welcoming and nurturing space for people who want to participate but may otherwise be facing challenges, be they lack of opportunity thus far, inherent biases in our system and/or individual biases. The aspirational goal is to make our field more attractive so we tap into the talent that is out there. The onus is on each of us to make it attractive, to share our experiences and achievements as well as disappointments.

People make career choices about what direction to take. How do we make the whole weather-water-climate professional ecosystem an attractive proposition to them? First of all I think the atmospheric and related sciences is in itself so interesting. It goes all the way from ivory tower to use-inspired, to application, to services, to tech development … We need exit ramps for people to leave and come back again. Increasing diversity is not only about gender diversity, important as that is. There are so many divides, e.g., rural-urban, socio-economic, minority and underrepresented groups. How do we ensure pathways to fuller participation? There’s also tension between foreign talent and the neglect in nurturing talent within this country. For example, we’re finding that smaller institutions, minority-serving institutions, smaller HBCUs oftentimes don’t have the infrastructure or ready access to federal resources. We had interesting sessions on the topic of broadening participation of the weather, water and climate enterprise at the 104th AMS Annual Meeting at Baltimore.

I want to understand and learn from the DEI assessment that AMS is undertaking. We have to be mindful that each of us is coming in with our own set of experiences. It’s challenging, but I believe that we need to keep striving doggedly with perseverance to create opportunities everywhere, innovation anywhere.

Who are some people who’ve influenced you and your leadership style?

We stand on the shoulders of those who went before us. People I admired like Drs. Joanne Simpson and Rita Colwell. They had the grit and determination to keep paving the way, just like the Honorable Justice Ruth Bader Ginsburg! They are right there at the top for early-career women to read about and draw inspiration from. Dr. Colwell was the first female Director of NSF. Last year, I was thrilled to receive an email of congratulations from her when I became President-Elect of the AMS. She recently authored the book, A Lab of One’s Own: One Woman’s Personal Journey Through Sexism in Science. Prof. Jim Fleming has written the book, First Woman: Joanne Simpson and the Tropical Atmosphere; it describes the life of Dr. Joanne Simpson and the challenges she overcame to achieve spectacular heights, pun intended!  

When I came to the United States I was fortunate to train/work with Dr. Jagadish Shukla and his group at the Center for Ocean-Land-Atmosphere Studies. Dr. Shukla’s adviser at MIT was Dr. Jule Charney, his advisor was Dr. Carl-Gustaf Rossby. As I look back, it was amazing how I benefited from interacting with the top-notch scientists in our field like Dr. Suki Manabe, who shared the Nobel Prize in Physics a few years back with two other climate scientists. I had the good fortune that my life intersected with such amazing people.

Dr. Anjuli Bamzai with Dr. Syukuro (Suki) Manabe and Dr. Anthony Broccoli.

When I joined the government, I had the opportunity to work with some of the best, who were really visionary. For example, Jay Fein, who passed away in 2016, set up some very big, ambitious projects like the Community Earth System Modeling project at NCAR. Ari Patrinos at DOE, Bob Correll at NSF, and Mike Hall at NOAA. I learnt something from each of these larger-than-life people in our field. I know it’s not all about luck, but having said that, I have been fortunate that I did meet some of the greatest. 

In India, my first advisor was kind of a renaissance person as well. He taught me to think big and bold, to seize opportunities from the world but also give back to society when the opportune moment arrives. To be strong about your convictions and proud of your achievements while at the same time being humble. I guess that was the culture that I came from. Certainly one should be assertive and one should speak candidly, while at the same time be open to learn and correct based on feedback. I think that if you let the arrogant side of your nature overcome you, then you’re going to stop learning, you’re going to stop keeping an open mind.

What are some of your priorities for your term as president, and for the AMS as a whole?

At AMS, we all come together as a Society because of a common kinship. For me, sustaining and enhancing a sense of camaraderie and networking amongst the various constituencies is a priority. Within and between the silos of science, practice, or services, there needs to be a lateral sharing of experiences through meetings and/or other events, through our publications. I would want to continue to enhance this so it results in a rich ecosystem which is attractive for the next generation.

The AMS has certain expertise to offer society, and we need to capitalize on the strengths of the AMS for society at large. How do we propagate that value chain through the various jigsaw pieces of an enterprise that is so large, and how do you put the puzzle pieces together so it yields successful outcomes?

The AMS community draws its historical lineage from the atmospheric and related sciences. However, we now know that the atmosphere is just one very important component of the Earth system, interacting with the ocean, the land, ecosystems, geology, and human systems. Understanding and responding to the system on a host of spatial and temporal scales is the grand challenge of our times. That’s the theme of the 2025 AMS Annual meeting in New Orleans. My theme is entitled, “Toward a Thriving Planet: Charting the Course Across Scales.” So local, regional, and global scales, from the weather/hydrology to climate. The state of Louisiana and the Gulf region are confronting problems such as loss of wetlands … so hopefully we will consider those issues a bit, engaging with the local community. 

I know it sometimes feels like unprecedented climate and environmental changes have already descended upon us and it is a hopeless situation. I think we still have to steady ourselves and think objectively about, what can we do best, and how can we contribute with our expertise, our talent pool and resources at hand. We can’t wish these problems away, neither will they be resolved right away. We need innovation, creative thinking, and sound solutions.

Who Creates the Future of AMS Peer Review? Maybe You Do!

Banners of 12 AMS journals laid out in a grid

By Gwendolyn Whittaker, AMS Publications Director

For Peer Review Week 2023, AMS and other scholarly publishers have been asked to reflect on both the essential role that peer review plays in scholarly communication, and also “the future of peer review.” In this second of our two Peer Review Week posts, we’ll take a look at how all stakeholders in AMS publications can contribute to discussions about evolving AMS peer review–and where those discussions might take place.

An evolving practice

In support of its Mission to advance science for the benefit of society, AMS publishes 12 peer-reviewed, highly regarded scientific journals. That high regard is the result of deep commitment over many decades from AMS’s volunteer leadership and from thousands of volunteer Editors and reviewers across the disciplines AMS represents. 

Researchers will take part in peer review throughout their career—sometimes as an author, sometimes playing the role of reviewer. Some will take on a journal editor role as well, with the responsibility of facilitating the review process and determining the ultimate fate of manuscripts. 

Peer review is a human endeavor, and is thus subject to human failings. Individual and systemic biases, along with global economic and social inequities, impact who has access to both the process and the results of peer review. But as with all human endeavors, its users can re-shape peer review to better serve its purposes.

As firsthand users of the tool that is peer review, researchers are the first to point out that peer review is not perfect, and the first to note where change is needed to better serve the scientific community.

At another level, disciplinary communities—such as those convened by AMS through its scientific meetings and journals—set ethical standards and best practices that reflect the communities’ values and expectations. The peer review process can and does change as those needs and values evolve. 

Peer review at AMS

For AMS, this ongoing “review of peer review” is centered in the work of the Publications Commission. Every AMS Chief Editor and the Chair of the BAMS Editorial Board is on the Commission, bringing constructive and insightful feedback from their editors, authors, reviewers, and readers to the Commission’s deliberations. The Commission sets best practices for editors, authors, and reviewers to follow, makes recommendations to AMS staff on improving processes and platforms, and provides policy and strategic recommendations to the AMS Council. 

In recent years, a particular focus for the Commission has been how to integrate AMS’s overall commitment to equity, inclusion, and justice into the publications endeavor. The Commission summarized its thinking so far in a recent editorial published in all the journals: “Equity, Inclusion, and Justice: An Opportunity for Action for AMS Publications Stakeholders.” As noted in the editorial, the Commission will be looking closely at results from AMS’s organization-wide Equity Assessment (currently underway), which will likely inform how AMS peer review evolves. 

As always, peer review at AMS will be shaped by the commitment and needs of researchers themselves, and also by scrutiny and constructive critiques from those who rely on the results—and who need the scientific endeavor to continue serving society into the future.

Have thoughts of your own on the future of peer review? Want to know more about peer review at AMS? Want to know how to volunteer to be considered as a reviewer or editor? Find out more or email us at [email protected]. We’ll be happy to hear from you!

What Do Non-Scientists Need to Understand about Peer Review?

Thoughts from AMS 2024 Editor’s Award Recipients

Peer Review Week 2023 logo

Understanding the role of peer review in science is vital not only for scientists themselves, but also for all of us who live in a society that relies on scientific research. Each September during Peer Review Week, AMS and other scholarly publishers highlight the essential role that peer review plays in scholarly communication.

In this first of two Peer Review Week posts, we’re hearing from some of AMS’s outstanding peer reviewers, recipients of the 2024 Editor’s Award, about what they think non-researchers need to understand about peer review.

At a basic level it is a check on, “do I believe the results presented here and the implications that are claimed?The check is made by other researchers working independently in the field. The checking of a single paper isn’t exhaustive, but there is an ongoing process—results and ideas established in one paper will, if they are of any significance, be re-examined and developed further in subsequent papers, which will themselves be peer reviewed.

Dr. Peter Haynes, Cambridge University
Dr. David Bodine

For non-researchers, I think it’s important to understand that peer review requires substantial effort … by volunteer reviewers, editors, and [the] scientists submitting manuscripts. A well-coordinated review process by all involved improves the quality and ensures the integrity of scientific research.

Dr. David Bodine, University of Oklahoma

Dr. Elizabeth Yankovsky

The peer review process is the only barrier standing between the writing of a scientific study and its publication. It is very easy for an unsubstantiated or erroneous paper to set an entire field back by years. In my opinion, the peer review process is as important as the research that goes into a given paper. … A given scientist may have one perspective and associated biases. Through peer review, the results are assessed by other scientists and are judged against the state of knowledge of the field. To push our boundary with the unknown forward, scientists must rely on both the historical backbone of their field as well as thorough review by their modern-day peers.

Dr. Elizabeth Yankovsky, New York University

Just because a paper was published after undergoing “peer review” does not make it absolutely correct or perfect, nor is it the final message on that idea. Unfortunately I feel the phrase “peer reviewed” is often used to imply some absolute consensus on a subject has been reached, when in reality it’s an ongoing, necessary criticism of the science that we do. As scientists we are constantly peer-reviewing each other’s work, and this may spark new, contrary ideas to be published that refute earlier findings.

Dr. Luke Madaus, Jupiter Intelligence
Dr. Sarah Buckland

Popular culture oftentimes misconstrues science in either the extreme of being purely political/agenda-driven or being the ultimate source of truth without question. The truth is, science is not ultimate, and understandings of processes and concepts are dynamic, and, as is especially evident in interdisciplinary research, scientists do have perspectives shaped by experiences. While I also cannot deny that bias exists in scientific fields and that contrasting perspectives may filter out at times, authentically anonymous and double-anonymous peer review processes (i.e., the reviewer not knowing the authors’ name(s)), act as guardrails to significantly reduce bias. [If] these processes remain clean and the selected reviewers are indeed experts in the field of the papers that they review, this significantly aids in ensuring that the end product is of the highest quality. The existence of these processes is why academic journals are deemed among the most credible sources of scientific information.

Dr. Sarah Buckland, University of the West Indies

Dr. Mimi Hughes

I think what I wish non-researchers understood about the scientific review process is how many eyes are on these papers before they’re published, and how that regularly improves the science and writing of the end-product. Most reviewers take the responsibility very seriously, and indeed are usually hesitant when they haven’t “found enough to fix” in a paper they review. It is typically a truly rigorous process.

Dr. Mimi Hughes, NOAA Physical Sciences Laboratory

Dr. Aaron Hill

I think non-researchers should know that peer review is only good and valuable when it is conducted from an unbiased position. It is vitally important that authors receive unbiased, external perspectives on their work in order to ensure that any gaps or misunderstandings can be addressed, and that the science is technically sound. Peer review is just ONE step in the scientific process as well, and sometimes bad work slips through the cracks of review. But peer review is a critical component to upholding and advancing science.

Dr. Aaron Hill, Colorado State University

Dr. Qiaohong Sun

Peer review serves as a crucial method for the scientific community to uphold the quality and credibility of scientific information accessible to the public. A paper passing peer review doesn’t guarantee absolute perfection, it indicates a level of examination and approval by experts in the field to some extent at the current time.

Dr. Qiaohong Sun, Nanjing University of Information Science and Technology

Dr. Sebastian Lerch

Peer review is a critical control mechanism in the scientific process. Mistakes can happen and may still get through the process. However, the collective nature of peer review and subsequent scrutiny by the scientific community help correct errors over time. This in particular highlights the importance of making research reproducible by publishing data and code.

Dr. Sebastian Lerch, Karlsruhe Institute of Technology

Dr. Andrew Feldman

It works! It is the main mechanism that keeps science reliable and transparent. Scientists respect and cite published work. In order to get science published, it needs to be read by 2-4 anonymous colleagues and editors and then revised. Even when it goes wrong and a paper is published with an error or not-well-supported argument, researchers are good at detecting this after the fact. It is a robust process that keeps the advancement of knowledge at a high-quality and transparent level.

Dr. Andrew Feldman, NASA Goddard Space Flight Center

A Few Takeaways from the “State of the Climate in 2022”

Map of significant global weather and climate anomalies and events of 2022.

Record-high greenhouse gases, sea levels, monsoons, and droughts—and a volcanic vapor injection

By Michael Alexander, Lead, Atmosphere Ocean Processes and Predictability (AOPP) Division, NOAA, and BAMS Special Editor for Climate

The annual NOAA/AMS State of the Climate report has just been released, with a comprehensive global look at the climate in 2022. Produced by the NOAA National Centers for Environmental Information (NCEI) and the American Meteorological Society, the State of the Climate Report maps out the complex, interconnected climate phenomena affecting all parts of the globe. It also charts global progress in observing and understanding our climate system. 570 scientists from 60 countries contributed to this year’s report, including a rigorous peer review, making it a truly global endeavor. 

As the senior editor on this project, I wanted to share with you a few highlights. Click here to read the full report, published as a supplement to the Bulletin of the American Meteorological Society.

New record-highs for atmospheric greenhouse gases CO2, methane, and nitrous oxide.

It was yet another record-setting year for atmospheric carbon dioxide and other greenhouse gases. 2022 saw an average concentration of 417.1 ± 0.1 ppm for atmospheric CO2; methane and nitrous oxide also reached record highs. 

Graphs of yearly global surface temperature compared to the 1991-2020 average for each year from 1900 to 2022, from 6 data records, overlaid on a GOES-16 satellite image from September 22, 2022.  Image credit: NOAA Climate.gov.

Warmest La Niña year on record.

Despite being in the typically cooler La Niña phase of ENSO, 2022 was among the six warmest years on record, and was the warmest La Niña year ever recorded. Summer heat waves left annual temperatures at near-record highs in Europe, China, the Arctic, and Antarctica (parts of Europe set daily or seasonal heat records), and New Zealand experienced its warmest year ever. High-pressure “heat domes” helped elevate local temperatures in many areas, including parts of North America and Europe. 

Record-high global mean sea level and ocean heat.

Global mean sea level reached 101.2mm above 1993 levels, setting a new record for the 11th year in a row. 2022 also saw record-high global ocean heat content (as measured to 2000 meters below the surface), although La Niña moderated sea-surface temperatures.

Image credit: NOAA

Complex climate picture.

Global warming trends continued apace, but of course numerous large-scale climate patterns complicated the picture. In 2022 we saw the first “triple-dip” La Niña event (third consecutive La Niña year) of the 21st century. The Indian Ocean Dipole had one of its strongest negative events since 1982, which led to increased temperatures and precipitation in the eastern Indian Ocean. Along with La Niña, this contributed to record-breaking monsoon rains in Pakistan that caused massive flooding and one of the world’s costliest natural disasters. We also had a positive-phase winter and summer North Atlantic Oscillation affecting weather in parts of the Northern Hemisphere. 

A bad year for drought.

For the first time ever, in August 2022, 6.2% of the global land surface experienced extreme drought in the same month, and 29% of global land experienced at least moderate drought. Record-breaking droughts continued in equatorial East Africa and central Chile. Meanwhile, parts of Europe experienced one of their worst droughts in history, and China’s Yangtze River reached record-low levels.

Warmth and high precipitation at the poles.

2022 was the firth-warmest year recorded for the Arctic, and precipitation was at its third-highest level since 1950. The trend toward loss of multi-year sea ice continued. Meanwhile, Antarctic weather stations recorded their second-warmest year ever, including a heatwave event that collapsed the Conger Ice Shelf, and two new all-time record lows in sea-ice extent and area set in February. On the other hand, record snow/icefall due to atmospheric rivers led to the continent’s highest recorded snow/ice accumulation since 1993.

Image credit: NOAA

Notable storms: Ian and Fiona.

85 named tropical cyclones were observed across all ocean basins, an approximately average number. Although there were only three Category 5 storms, and the lowest recorded global accumulated cyclone energy, the year produced Hurricane Ian, the third-costliest disaster in U.S. history, as well as Hurricane Fiona, Atlantic Canada’s most destructive cyclone.

Massive volcanic injection of atmospheric water vapor.

The Hunga Tonga-Hunga Ha’apai submarine volcano in the South Pacific injected a water plume into the atmosphere of unprecedented magnitude (146+/-5 Terragrams, about 10% of the stratosphere’s total water) and height (reaching into the mesosphere). We don’t yet know what, if any, long-term effects this will have on the global climate, although the increase in water vapor has interfered with some earth system observations. 

The full report is a comprehensive and fascinating analysis of our climate system in the previous calendar year. I urge you to read it and communicate your own takeaways from the State of the Climate in 2022. You can read the press release here.

Infographic at top: World map showing locations of significant climate anomalies and events in 2022. Credit: NOAA.

A Week in Washington for a Student Scientist

Photo: Haven Cashwell in front of the U.S. Capitol Building

Guest post by Haven Cashwell, PhD Student and Graduate Research Assistant at Auburn University

From my small hometown of Marshallberg in eastern North Carolina, and even my current home as a researcher and PhD student at Auburn University, the chambers of Congress have always felt like a different world. I had never even visited Washington, D.C., before, so truly I did not know what the policy world looked like. The recent AMS Summer Policy Colloquium opened these doors to me and showed that the pathway between research and policy isn’t as distant as I once thought.

The integration of science and policy has always intrigued me—such as policy for coastal resiliency, since my hometown of Marshallberg, NC is being impacted by climatic changes—but I was not aware of how that process worked. As I finish my PhD, I’m also exploring possible career paths that I could take after graduating. One aspect of my current research involves assessing and communicating climate and health risk factors with frontline communities in the Carolinas, which has made connections with the policy process feel even more pressing.

My mentor for an internship this summer is Dr. Kathie Dello, North Carolina’s state climatologist, who previously attended the colloquium and encouraged me to participate as well. After a week at the Colloquium, I left with lots of new knowledge and a much greater appreciation of how the policymaking process works.

For instance, I learned about the concepts of science for policy and policy for science, and how to navigate the two. Given my background in science communication, the idea of translating scientific evidence and research results to be usable and actionable (science for policy) felt very familiar, but I gained a new understanding of how policy affects funding that goes to different agencies for scientific research (policy for science). 

The 2023 AMS Summer Policy Colloquium cohort walking to Capitol Hill

Together with several dozen fellow scientists, I heard from professionals working in the policy world. They represented careers ranging from those having to do with the federal budget process to congressional staffers working directly with members of congress on science initiatives. I had no idea the options were so broad and varied. And far from the common perception that policy has to be dull, these speakers had great passion for their own work and a clear enthusiasm for sharing that with my peers and me.

We put our knowledge into practice in a legislative exercise that was sprinkled throughout the week. Participants were separated into groups and assigned to play the role of a senator marking up certain legislation. The goal was to get an understanding of how politics, policy, and procedure interact in the legislative process by creating amendments to bills and working together to create a significant piece of legislation. Much enthusiasm was shared among the participants at the end of the week when “voting” for the legislation, as the hard work throughout the entire week was put into practice. 

I left the Colloquium not only with a much better understanding of how science and policy can connect, but also with a new cohort with whom I networked throughout the week. Whether our careers keep us in the sciences or shift toward the world of policy, I’m excited for our paths to cross in the future and see how our experiences from this week in Washington shape our own work.

I would recommend attending the Summer Policy Colloquium to any young scientist who is interested in the policy process. By being better informed about how science and policy intersect, I’m now able to consider how my own research could fit in, whether it’s sharing how results from my research could influence policy or how to communicate and collaborate with policymakers in general.  

The 2023 AMS Summer Policy Colloquium cohort

Whether my future takes me back to small towns facing climate risks, leading research universities, or even a career in the policy sector, I know that the Summer Policy Colloquium has given me the tools and knowledge to be a more well-rounded researcher capable of connecting with the world of policy.

About the AMS Summer Policy Colloquium

The AMS Summer Policy Colloquium provides an overview of policy basics and decision-making in the earth and atmospheric sciences, along with opportunities to meet and dialogue with federal officials, Congressional staffers, and other decision-makers. Aimed at early and mid-level federal managers, scientists, private-sector executives, university faculty, and selected graduate students and fellows, the Colloquium helps participants build skills and contacts, gauge interest in science policy and program leadership, and explore selected issues in depth.

The Volunteer Power behind Peer Review

by Tony Broccoli, AMS Publications Commissioner

The peer review process is essential for high-quality scientific publication. Most readers of BAMS are aware of this simple fact, but we often hear questions about the many volunteers who take part in the peer review process. What is the difference between editors and associate editors? How do we choose chief editors? To answer these and other questions as part of this year’s Peer Review Week, I will provide a quick look at the roles of volunteers who make the peer review process work.

TonyB

When a manuscript is submitted to one of the 11 technical journals published by AMS, it is examined by the chief editor of that journal. (Two AMS journals, Journal of Atmospheric and Oceanic Technology and Journal of Climate have two co-chief editors.) If the manuscript meets basic standards of clarity, language, and content, the chief editor will assign an editor to handle it. The handling editor’s area of expertise will typically be consistent with the topic of the manuscript.

The next step for the handling editor is the selection of reviewers for the manuscript. Reviewers are also chosen on the basis of their expertise because they are being asked to make a technical assessment of the manuscript under consideration. Most manuscripts are assigned to two to three reviewers, who are expected to return their reviews in a specified length of time.

Once the reviews of a manuscript have been received, the handling editor is responsible for evaluating them and deciding the outcome of the peer review process. The editor may decide to 1) accept the manuscript without revision (this is quite rare); 2) require minor revisions that will be judged by the editor without further evaluation by the reviewers; 3) require major revisions, after which the revised manuscript will typically be subject to another round of evaluation by the reviewers; or 4) reject the manuscript as unsuitable for publication. In making a decision, the editor is not simply tallying the recommendations of the reviewers, but instead using the reviews to make an informed judgment about the manuscript.

Thus the scientific publication process depends critically on many people who generously donate their time. Reviewers are at the heart of the peer review process; this army of volunteers provides a critical evaluation of each manuscript and offers suggestions on how it can be made stronger. Reviewers who have a history of providing excellent and timely reviews are often invited to become associate editors, who agree to provide more frequent reviews, review manuscripts on short notice, and advise the editors of challenging or difficult cases.

Editors are frequently chosen from the ranks of associate editors who have performed their duties with distinction. Successful editors have certain attributes: they are excellent scientists, they have good judgment, and they have superior time-management skills. Each of these attributes is important for making sound decisions about manuscripts, communicating with authors and reviewers, and managing the unrelenting stream of incoming manuscripts in a timely manner.

Experience and accomplishment in per- forming the duties of an editor are among the primary considerations in identifying candidates for chief editor. Although this may be the most visible position among the volunteers who contribute to the peer review process in AMS Publications, it is by no means the most important. Reviewers, associate editors, editors, chief editors, and the AMS staff who work with them are all crucial to the scientific publishing enterprise. Regardless of which of these roles you occupy, you are making an important contribution to an essential element of scientific research.

To get involved, please follow this link to the AMS publications website.

COVID-19 and the Weather, Water, and Climate Enterprise

by Mary Glackin, AMS President

In normal times, our thousands of AMS professionals and colleagues are completely dedicated to helping people make the best possible weather-, water-, and climate-related decisions. In this COVID-19 period, were not just providing critical information; we are also receiving it. We are each of us following guidance from public health experts and local officials so that we can keep ourselves, our families, and our friends safe and well. We’re joining in the national and global efforts to “flatten the curve.”

amsseal-blueWe all continue to work, but these duties are now competing with new ones: caring for children who would normally be in school, searching for basic necessities that would routinely be in stock on supermarket shelves, protecting elderly friends and family members. With campuses and laboratories shut down, professors and students have scrambled to adjust to online teaching and reimagining plans for field experiments. Nonetheless, critical weather and hydrologic services are provided with sharp eyes for spring floods and convective weather. Preparations for the coming hurricane season are moving forward.

COVID-19 doesn’t “slightly tweak” the task of building a Weather-Ready Nation; it completely rearranges the landscape. Goals of shelter-in-place and evacuation have to be reconfigured for a world where we are advised by health experts to maintain physical separation from others—more than a challenge in a communal evacuation center.

COVID-19 provides a unique learning opportunity for all of us in the Enterprise. We can experience firsthand how even the best-intended top-down risk communication can sound to someone in harm’s way—and step up our own communications accordingly.

Finally, it’s worth noting as AMS embarks on its second century that our founding coincided with the 1918-19 influenza pandemic. The link between weather, water, climate, and public health (enshrined in the AMS seal) has been integral to building a sustainable and resilient world, and it will likely play a larger role in the future.

Thank you for maintaining essential services and supporting research and education during such a critical, difficult time. Stay well, and stay safe—and at the same time, stay focused, on our contributions to a safer, healthier world.

AMS’s New Culture and Inclusion Cabinet

by Keith L. Seitter, CCM, AMS Executive Director

One of the AMS Core Values is: “We believe that a diverse, inclusive, and respectful community is essential for our science.”

AMS lives this value, which is articulated in the Centennial Update to the AMS Strategic Goals. We work to foster a culture that celebrates our diversity, strives for equity in all we do, and encourages inclusion across all activities so that everyone can experience a sense of belonging in the Society.

To formalize these efforts and provide a clearer path for providing resources toward them, the Council approved the creation of a new entity in AMS in fall 2019. At its meeting this past January, the Council approved the terms of reference for this new component of the Society’s structure and that Dr. Melissa Burt would serve as its first chair. This Culture and Inclusion Cabinet (CIC) has the following charge:

To accelerate the integration of a culture of inclusion, belonging, diversity, equity, and accessibility across the AMS and evaluate and assess progress towards culture and inclusion strategic goals within the Society. Meaningful integration into all areas and components of the AMS will require time and sustained effort. Fully integrating diversity, equity, inclusion, and belonging (DEIB) will result in an organizational culture that is accessible, advances science, serves society, and is responsive to social justice.

The Council designates this new body as a “Cabinet” to reinforce that it is not quite like any of the other entities making up the volunteer structure of the Society (council, commission, board, committee, task force, etc.). The CIC will play a unique role and therefore was given a unique name.

The CIC sits at the highest level of the organizational structure for AMS save the Council itself, to which it reports directly. Being at this level it can more readily ensure that issues of diversity, equity, inclusion, accessibility, social justice, and belonging are addressed throughout all AMS programs and activities.

The CIC does not replace any of the other components of the Society that work in these arenas—most notably the Board on Women and Minorities (BWM), which has a long record of addressing equity and inclusion issues in AMS. The BWM will continue to oversee specific programs aimed at diversity, equity, and inclusion, and will likely expand its role in AMS programs as the CIC helps integrate those efforts more broadly in the Society.

AMS has a strong record of addressing diversity and equity issues and a culture of inclusivity that other organizations could learn from. The creation of the CIC builds on those strengths and puts AMS in a position of leadership among scientific organizations in elevating these issues to the highest levels so that they can be threaded through every program in foundational ways.

For many of us, the sense of belonging in AMS is an important part of what makes the Society so special, and we want everyone in the community to feel that sense of belonging as an intrinsic aspect of the AMS culture. I am confident the new Culture and Inclusion Cabinet will take us there and will assist our entire community in creating an even more inclusive environment—strengthening our enterprise in the process.

AMS's New Culture and Inclusion Cabinet

by Keith L. Seitter, CCM, AMS Executive Director
One of the AMS Core Values is: “We believe that a diverse, inclusive, and respectful community is essential for our science.”
AMS lives this value, which is articulated in the Centennial Update to the AMS Strategic Goals. We work to foster a culture that celebrates our diversity, strives for equity in all we do, and encourages inclusion across all activities so that everyone can experience a sense of belonging in the Society.
To formalize these efforts and provide a clearer path for providing resources toward them, the Council approved the creation of a new entity in AMS in fall 2019. At its meeting this past January, the Council approved the terms of reference for this new component of the Society’s structure and that Dr. Melissa Burt would serve as its first chair. This Culture and Inclusion Cabinet (CIC) has the following charge:

To accelerate the integration of a culture of inclusion, belonging, diversity, equity, and accessibility across the AMS and evaluate and assess progress towards culture and inclusion strategic goals within the Society. Meaningful integration into all areas and components of the AMS will require time and sustained effort. Fully integrating diversity, equity, inclusion, and belonging (DEIB) will result in an organizational culture that is accessible, advances science, serves society, and is responsive to social justice.

The Council designates this new body as a “Cabinet” to reinforce that it is not quite like any of the other entities making up the volunteer structure of the Society (council, commission, board, committee, task force, etc.). The CIC will play a unique role and therefore was given a unique name.
The CIC sits at the highest level of the organizational structure for AMS save the Council itself, to which it reports directly. Being at this level it can more readily ensure that issues of diversity, equity, inclusion, accessibility, social justice, and belonging are addressed throughout all AMS programs and activities.
The CIC does not replace any of the other components of the Society that work in these arenas—most notably the Board on Women and Minorities (BWM), which has a long record of addressing equity and inclusion issues in AMS. The BWM will continue to oversee specific programs aimed at diversity, equity, and inclusion, and will likely expand its role in AMS programs as the CIC helps integrate those efforts more broadly in the Society.
AMS has a strong record of addressing diversity and equity issues and a culture of inclusivity that other organizations could learn from. The creation of the CIC builds on those strengths and puts AMS in a position of leadership among scientific organizations in elevating these issues to the highest levels so that they can be threaded through every program in foundational ways.
For many of us, the sense of belonging in AMS is an important part of what makes the Society so special, and we want everyone in the community to feel that sense of belonging as an intrinsic aspect of the AMS culture. I am confident the new Culture and Inclusion Cabinet will take us there and will assist our entire community in creating an even more inclusive environment—strengthening our enterprise in the process.

Tornado Researchers Gather to Improve Wind Speed Estimation

The Wind Speed Estimation (WSE) standards committee–jointly supported by AMS and the American Society of Civil Engineers–is holding its 9th meeting this week in conjunction with an NSF-funded Tornado Hazard Wind Assessment and ReducTion Symposium (THWARTS) at the University of Illinois in Champaign-Urbana.
The WSE committee began in 2014 to develop standards for an improved process to estimate extreme storm winds. Currently, NWS and private post-storm damage surveys use the EF-Scale and treefall pattern analysis, real-time radar and in situ observations, remote sensing, and forensic investigations. The WSE committee includes a data archival team as well as an international working group to broaden the scope of the standard. (Click here for more information about the committee.)
WSE
This is the second joint meeting of WSE/THWARTS and will focus on sharing the latest findings on the multidisciplinary aspects of severe local storms, including the fields of meteorology, wind science and engineering, structural engineering, social science, and policy. A flyer about the symposium with basic information is available online.
Keynote speaker for THWARTS will be Erik Rasmussen. He was the field coordinator of the first of the VORTEX projects in 1994-1995 and a lead principal investigator for VORTEX2 from 2009-2010 and VORTEX-SE from 2016-2017. He currently consults with NOAA’s National Severe Storms Laboratory and the Cooperative Institute for Meteorological Satellite Studies.
The WSE meeting begins after the final session of THWARTS. The meeting is the first step toward a request for public comment on WSE, likely next year.