What’s the Value of a Weather Forecast?

"Colorado Flakes" by Henry Reges

Highlights from the CoFU2 study: Part 2

By Jeffrey K. Lazo

This is part two of my summary of the Communicating Forecast Uncertainty (CoFU) 2 study, a follow-up (based on a 2022 national survey) to the 2009 CoFU 1 study that examines how the U.S. public gets, perceives, uses, and values weather forecasts. In part one we discussed key findings and delved a bit deeper into who uses forecasts the most, what they use forecasts for, and where they get their forecasts from. Read part 1 here.

In this post, we’ll examine public satisfaction with weather forecasts, what people most want from a forecast, and how much money the general public thinks a forecast is worth.

How satisfied are people with weather forecasts?

As shown below, people are more satisfied with weather forecasts than before. Overall, satisfaction with weather forecasts on average was 4.03 on a 5-point scale (significantly higher than the 3.78 average in 2006). People with higher education, Latinos, those who use city-specific weather forecasts, and those who access forecasts purely out of interest were more satisfied. People who spent more leisure time outside or used forecasts to plan social activities, however, were less satisfied.

Interestingly, however, there has been a slight decrease when it comes to confidence in weather forecasts—specifically short-term (1-day) weather forecasts. Confidence in 3-day and longer forecasts increased between 2006 and 2022. We don’t know exactly why, and are curious to further explore this question. I am particularly interested in examining whether these changes in public perception actually track with differences in forecast performance.

Average Confidence in Forecasts by Time Period and Survey Version 

Notes: The survey question asked, “How much confidence do you have in weather forecasts for the times listed below?” The times were listed as “Less than 1 day from now, “1 day from now,” and so on, out to “7 to 14 days from now.” (CoFU1 n = 1,465; CoFU2 n = 1,092). Source: CoFU2, Figure ES-5.

What weather factors matter most to people?

We asked survey respondents which components of a weather forecast were most important to them. In 2006, people most wanted to know when precipitation was going to occur. In 2022, however, high temperature took the top spot. This reflects an overall preference for precipitation information in 2006 vs. temperature information in 2022. That preference could be related to climate shifts, or it may simply be a reflection on when the surveys took place (November in 2006, May in 2022).

Mean Importance of Forecast Attributes Ranked by Difference between Surveys 

Notes: The survey question asked, “How important is it to you to have the information listed below as part of a weather forecast?” (CoFU1 n = 1,465; CoFU2 n = 1,092). Source: CoFU2, Figure ES-7.

How do people value weather forecasts?

We assigned each respondent a dollar value that they might hypothetically pay in taxes each year to support NWS products and services (including forecasts). We then asked whether NWS services were worth that amount, worth more, or worth less. Using those responses, we calculated the likelihood of saying it was worth that amount for each dollar value, and then calculated the median willingness to pay for weather forecasts as $898.50, with a 95% confidence interval of approximately $700-$1,300 per household per year as shown below.

Fitted Demand Curve for Current Weather Forecast Information

Notes: The survey question asked “Do you feel that the services you receive from the activities of the NWS are worth more than, exactly, or less than $N a year to your household?” (CoFU2 data only n = 1,094). Source: CoFU2, Figure ES-10.

On average, people who were older, who were employed full time or were homemakers, who were white, who spent more recreational time outside, who used forecasts for social activities or just out of interest, and who highly valued knowing the daily high temperature were all less willing to pay for NWS forecasts. Those who spent more working time outside, used forecasts more frequently, placed more importance on NWS information, had more personal weather impacts, considered wind and cloud information more important, and who had greater total weather salience (a measure of attunement to and awareness of weather) were all more willing to pay for current forecasts. Related to the Cultural Theory of Risk, people who were identified as “individualists,” based on cultural risk theory, were significantly less likely to be willing to pay for forecasts. Individualists may perceive themselves to be less at risk from weather events.

If we can take the $898.50 median value as the average household willingness to pay, we can then aggregate this across the entire US population of about 120 million households. Accounting for the portion who say they don’t use forecasts, we calculate a total value to the US of about $102.1 billion for current weather forecast information. 

Like any large-scale study of human beings, this analysis has tried to be as representative and accurate as possible—and yet almost certainly has potential gaps. Hopefully CoFU2 provides a useful picture of weather forecasts and the U.S. public, but its results should be replicated and further studied if they are to be used to inform any real-world decisions. Access to weather information can be a life-and-death matter, and no decision about that should be taken lightly. Read the full study here.

Photo at top: “Colorado Flakes,” by Henry Reges, was a finalist in the 2022 AMS Weather Band Photo Contest.

How Does the U.S. Public Get its Weather Forecasts?

Photo, 'Striking Sunset'

Highlights from the CoFU2 Study: Part 1

By Jeffrey K. Lazo, PhD

In 2006, I, my National Center for Atmospheric Research (NCAR) colleagues Julie Demuth and Rebecca Morss, and Alan Stewart of The University of Georgia began designing and implementing a national study of weather forecast users. We wanted to understand how people are getting their forecasts, how they’re using them, and how much they’re worth to people. 15 years after that study was published, I have released the follow-up study: Communicating Forecast Uncertainty (CoFU) 2. Using essentially the identical 2022 survey, I replicate and extend the findings from the first survey for another look at the public’s relationship with weather forecasts. We believe that our 2022 survey reached a more representative proportion of the U.S. population, including younger adults and certain racial groups, compared with the survey in 2006. 

In this post–part one of two–I delve into a few of the key takeaways.

The big picture

This study estimates that members of the U.S. public access weather forecasts roughly 317 billion times per year—a 7.26% increase since 2006, driven largely by the increase in U.S. population. There was also a significant increase, however, in the number of survey respondents who said they never used weather forecasts. If this result is real, and not just an unusual result of the repeated survey implementation, it would be very important to understand why. Overall, people rated their satisfaction with weather forecasts high, but confidence in short-term (1-day) forecasts has decreased, while people were more confident in longer-term forecasts. 

To get their forecasts, people continue to shift toward sources like web pages and cell phones, from which they specifically seek out weather information, rather than more “passive” sources such as TV and public/private radio broadcasts. 

The estimated monetary value of forecasts to the U.S. public is $102.1 billion (which comes out to about 32 cents per forecast use). However, our approach to obtaining this value was limited, and we feel it should be used only as an estimate of the overall strength of people’s preferences for the information pending more rigorous studies.

Who’s using weather forecasts, and what for?

People with the following characteristics were more likely to say they used weather forecasts: Higher income, female, more highly educated, White, Black, Asian, Native, and those who spend leisure time outdoors.

The percentage of the surveyed population who said they never used weather forecasts increased from 3.62% in 2006 to 9.15% in 2022, a statistically significant difference. This was a basic yes/no question, so we don’t have good information about what people mean when they say they don’t use weather forecasts at all. It’s also possible that our latest survey did a better job of reaching people who don’t use weather forecasts. As noted above, if there has been a real decline in the number of people using forecasts this should be examined in more detail to determine why. 

According to the survey, the most common reason people checked a forecast was simply to know what the weather would be like (they may be simply monitoring the weather in case their plans change or the weather shifts dramatically). The next most common uses were for weekend activities, getting dressed, social activities, and travel. Job-related activities and commuting ranked last.

How and where are people getting their forecasts?

As shown in the figure below, usage of weather forecast sources such as TV, commercial and public radio, and newspapers has decreased since 2006. Notably, these are sources which tend to be more traditional and more “passive,” in that you may come across weather information without specifically looking for a forecast. Meanwhile, the use of more “modern” sources like NWS web pages, phones, and other electronic devices increased, along with the use of social connections and NOAA Weather Radio to find out about weather information. These days, people who use weather forecasts appear to be more likely to actively seek out this information.

Frequency of Use by Source by Survey Version 
Notes: The survey question asked, “How often do you get weather forecasts from the sources listed below?” Response options ranged from “Rarely or never” to “Two or more times a day,” and were conservatively recoded into times per month. (CoFU1 n = 1,465; CoFU2 n = 1,092). Source: CoFU2, Figure ES-2.

The number of times that the average person accessed weather information each month slightly increased between 2006 (115.4) and 2022 (117.8), but the difference was not statistically significant. Time of forecast access has shifted slightly earlier in the day on average, which we suspect may be related to the shift away from TV forecasts, or possibly an increase in people who work from home since the onset of the COVID pandemic.

Tune in for part 2 of this summary to learn more about what people are looking for from weather forecasts, and how we arrived at an economic value for those forecasts. Or, you can read the full study here.

Photo at top: “Striking Sunset,” by Liz Kemp, was an entry in the 2023 AMS Weather Band Photo Contest.

Community Modeling and the Future of Numerical Weather Prediction

A 2024 AMS Summer Community Meeting highlight

The AMS Weather Enterprise Study will provide a comprehensive picture of the shifting landscape of weather-related fields to inform our joint future. At the 2024 Summer Community Meeting, working groups discussed what they’d found about key issues facing the enterprise.

Here are a few takeaways from the Community Modeling working group, as reported by Gretchen Mullendore of the NSF National Center for Atmospheric Research (NCAR). Community modeling employs Earth system model software developed by public-academic partnerships. Community models have open-source components and are freely available for use by anyone with the computing power to run them–for example researchers, students, and private companies.

Photo: Gretchen Mullendore

How has the community modeling landscape changed in recent years, and where are we now?

First, artificial intelligence and machine learning (AI/ML) have become huge players in numerical weather prediction (NWP) model development. Second, a cultural change in weather research and forecasting is taking place; we’re beginning to collaborate much more closely across agencies and industries than we used to, and many people are invested in deepening those collaborations.

What were the main themes that came out of your working group’s discussions?

The NWP community is collaborating more than ever before. However, the community remains spread among many institutions, with each research group working on small pieces of the overall weather prediction challenge. Having many research groups can be a strength in terms of encouraging innovation, but it is a weakness if research isn’t coordinated effectively to fully realize collective benefits. Limited funding and resourcing is an additional barrier to community model development. As a community, we need to continue to prioritize modularity and interoperability across NWP systems and work towards more effective shared governance.

Another major theme is the role of the private sector in NWP. Big tech companies are increasingly getting into NWP and there is a concern that public forecasting efforts are not able to keep pace. The private sector brings agility and innovation to the field, and working to leverage unique contributions across public, academic, and private research entities is valuable. However, if the growing role of the private sector in NWP leads to more observations, simulations, and software being behind proprietary walls, there is risk to accessibility and collaboration.

The NWP community is also facing challenges in workforce development. Universities are teaching people the right skills to work in data assimilation and analytics, but many of those people are being scooped up by private sector companies in other fields offering salaries that employers in the weather industry cannot compete with. We need to better communicate the value of our missions and our work to attract and retain talented early career professionals.

What preliminary recommendations or future directions have you discussed?

We can and should continue to build on community efforts to coordinate across public, academic, and private developers. This coordination should include planning for the appropriate use of AI/ML tools in NWP research and applications. We can also build on efforts to leverage social science research to prioritize our limited resources, e.g., by learning what type of forecasting improvements will most benefit stakeholders. Finally, we need to recognize the importance of the legislature in resourcing model development. It’s important to communicate our successes and the value of a thriving NWP community. In summary, we should strategize to develop intentional communication among ourselves, across disciplines, and most importantly, with legislatures and the public.

What did you hear from the community at the Summer Community Meeting?

My pick for the most important question asked at the SCM is, “What does success look like in NWP development?” The goal that motivates us all in the NWP community is for no more deaths to occur as a result of weather hazards. In order to achieve breakthroughs in prediction that stand to move us closer to that goal, we need to invest in innovation, which requires risk. However, much of the work in NWP development is funded by federal agencies, which tend to be risk-averse. More broadly, the systems in which our scientists work can be an impediment to innovation. For example, the pressure to publish often incentivizes incremental progress over new ideas. Collectively, as an NWP community, we need to build systems that allow researchers to take risks without fear of failure or negative consequences.

What are the main challenges, conflicts, or points of discussion identified by the group (or at the SCM)?

AI/ML could possibly improve the skill and speed of all parts of the NWP system. That said, the challenges are also great. Challenges include a lack of AI/ML expertise in NWP community leadership; a need to invest in AI/ML without additional resources; and a need to keep up with the latest AI/ML research, which is moving incredibly rapidly. The lack of clear AI/ML plans from U.S. institutional leaders in NWP led some to ask at the SCM if leaders were skewed against it. My perception is instead that the community is feeling overwhelmed by these challenges. We can overcome these challenges through innovation and collaboration, leveraging our respective expertise and investments to more efficiently take advantage of the great opportunity that is AI/ML in NWP.

Want to join a Weather Enterprise Study working group? Email [email protected].

About the Weather Enterprise Study

The AMS Policy Program, working closely with the volunteer leadership of the Commission on the Weather, Water, and Climate Enterprise, is conducting a two-year effort (2023-2025) to assess how well the weather enterprise is performing, and to potentially develop new recommendations for how it might serve the public even better. Learn more here, give us your input via Google Forms, or get involved by contacting [email protected].  

About the AMS Summer Community Meeting

The AMS Summer Community Meeting (SCM) is a special time for professionals from academia, industry, government, and NGOs to come together to discuss broader strategic priorities, identify challenges to be addressed and opportunities to collaborate, and share points of view on pressing topics. The SCM provides a unique, informal setting for constructive deliberation of current issues and development of a shared vision for the future. The 2024 Summer Community Meeting took place August 5-6 in Washington, DC, and focused special attention on the Weather Enterprise, with opportunities for the entire community to learn about, discuss, debate, and extend some of the preliminary findings coming from the AMS Weather Enterprise Study.

What’s the Future of Weather Decision-Making?

A 2024 AMS Summer Community Meeting highlight

Matt Corey

The AMS Summer Community Meeting drew exceptional attendance and engagement this year as people across sectors helped inform an upcoming report on the Weather Enterprise. The AMS Weather Enterprise Study will provide a comprehensive picture of the shifting landscape of weather-related fields to inform our joint future. At the 2024 SCM, working groups discussed what they’d found about key issues facing the enterprise, and asked for feedback from the community.

Here are a few takeaways from the Decision Support Services working group, as reported by Matt Corey (pictured at left) of Microsoft Weather. Decision support services (DSS) help stakeholders make weather-related decisions that are informed by the best available knowledge across fields. They are crucial for emergency managers and many other decision makers, as well as members of the public.

How has the decision support landscape shifted in the last decade or so?

Stakeholders for DSS range from an emergency manager making critical decisions about an entire community to an everyday citizen making a decision for themselves or their family. For decision support services, the last two decades have seen an abundance of technology changes which have allowed stakeholders easier access to information. However, this can be both a benefit and a challenge, as misinformation has also become more readily available.

What were the main themes that came out of your working group’s discussions?

The themes that emerged for us included:

  • The different sectors of the Weather Enterprise have become coupled, with less well-defined boundaries when it comes to providing decision support.
  • New players are entering the enterprise, with growing AI and novel ideas.
  • Developing and maintaining the necessary workforce is a concern.
  • There are increased opportunities for translating forecasts into easily understood language in order to support decisions.
  • There is a need for increased funding for quality observational datasets for many applications, especially in AI.
  • In a complex, misinformation-rich environment, there is still room for all sectors to tailor communications to stakeholders, but there is also concern about maintaining consistency in order to maintain trust.
  • Embracing user centric design to understand stakeholder concerns, technical levels, and understanding is important, including the use of probabilistic information.  Example:  “There is an 80% chance the flooding will happen this afternoon.”

What are the main challenges you have identified?

In our group, the discussion continues to be about who should be providing decision support services. As the NWS gets more involved in DSS, one concern is for increased friction from some private sector entities. Another key point is that DSS is not limited to a specific stakeholder type. DSS is important to all citizens who need to make decisions involving weather every day, thus there is a shared dimension and need for responsible and clear messaging to all stakeholders (including the tactical use of probabilistic information). 

A final recurring theme is around the workforce itself. Forecasters need to be taught communication skills, and social science is critical in helping to understand the needs and problems to be solved for the end users. With the focus shifting to newer tools including AI-infused capabilities, there is a concern that the new workforce will lose the necessary skills critical in conveying adequate decision support services.

What preliminary/tentative recommendations, solutions, or future directions have you discussed?

Some of the recommendations we’re working with right now focus on:

  • Integration of weather, water, and climate information with socioeconomic and biosphere information for earth system forecasts.
  • Cross-sector support of ecological forecasts and environmental early warning systems (for example, warnings of fishing industry impacts due to warmer water) to benefit society and facilitate impact-based action.
  • Improved communication about weather impacts, especially in a changing climate, using common terms and learnings based on stakeholder’s decision needs.
  • Embracing AI as a way to increase the velocity of forecasts, integrate probabilistic information into forecasts, and increase efficiency for both short-term services like nowcasting and long-term climate solutions for all.
  • Helping meteorologists to become the communicators that they should be. Leveraging AI solutions and tools to help make them more efficient at helping stakeholders with their decisions.
  • Expanding opportunities for smaller businesses/individuals to obtain specialized DSS.
  • Increased public awareness of changing weather patterns stimulating the need for better accuracy, earlier warnings, and long-range projections.
  • The need to smartly integrate probabilistic information to help stakeholders better understand forecasts and limitations.

Want to join a Weather Enterprise Study working group? Email [email protected].

About the Weather Enterprise Study

The AMS Policy Program, working closely with the volunteer leadership of the Commission on the Weather, Water, and Climate Enterprise, is conducting a two-year effort (2023-2025) to assess how well the weather enterprise is performing, and to potentially develop new recommendations for how it might serve the public even better. Learn more here, give us your input via Google Forms, or get involved by contacting [email protected].  

About the AMS Summer Community Meeting

The AMS Summer Community Meeting (SCM) is a special time for professionals from academia, industry, government, and NGOs to come together to discuss broader strategic priorities, identify challenges to be addressed and opportunities to collaborate, and share points of view on pressing topics. The SCM provides a unique, informal setting for constructive deliberation of current issues and development of a shared vision for the future. The 2024 Summer Community Meeting took place August 5-6 in Washington, DC, and focused special attention on the Weather Enterprise, with opportunities for the entire community to learn about, discuss, debate, and extend some of the preliminary findings coming from the AMS Weather Enterprise Study.

How is Weather Research Changing?

A 2024 AMS Summer Community Meeting highlight

The AMS Summer Community Meeting (SCM) drew exceptional attendance and engagement this year as people across sectors helped inform a major upcoming report on the Weather Enterprise. The AMS Weather Enterprise Study will provide a comprehensive picture of the shifting landscape of weather-related fields to inform our joint future. At the 2024 SCM, working groups discussed what they’d found about key issues facing the enterprise, and asked for feedback from the community. 

Here are a few takeaways from the Research Enterprise working group, as reported by Daniel Rothenberg of Brightband.

Photo courtesy of Daniel Rothenberg.

How has the weather research landscape shifted in the last decade or so?

Two of the most important shifts have been a movement of exploratory and applied research from the public to the private sector, and the rise in importance of “data science” and other hybrid roles blending a mixture of domain expertise and broader engineering and technical skills. 

Possibly the biggest example of these shifts coming together has been the advent of AI-based weather forecasting tools, although it also shows in trends such as the rise of private companies operating earth observation platforms.

What were the principal themes that came out of your working group’s discussions?

One major theme we discussed was the balance of responsibilities across the traditional weather enterprise. Initiatives such as building and launching satellite constellations or developing new weather models were at one point solely within the remit of the public sector (due to complexity and cost), but are now commonly undertaken by the private sector – sometimes even at start-up companies.

This re-balancing opens as many opportunities as it does challenges, and leads to another major theme: how we can best prepare for the workforce needs of today and tomorrow. Meteorologists will increasingly need to apply technical skills such as software development and data science alongside ones from the social sciences; preparing our current and future workforce for these demands will be a challenge in its own right.

A third major theme is that the weather enterprise is getting bigger. We’re not just a community of meteorologists anymore. Increasingly, critical work related to weather, water, climate, and their impacts on society is being undertaken beyond the traditional boundaries of our enterprise. There is a significant opportunity to improve society’s resilience if we as a community are able to build relationships with the new institutions working on these issues in a collaborative, interdisciplinary manner.

What are the main challenges you have identified?

Better accounting for how we ought to invest limited – and declining – federal resources will be a significant and contentious challenge, only complicated by the shifts in priorities and capabilities across the enterprise.

Those shifts motivate a second key challenge, which is clarifying who in the enterprise is accountable for, or has ownership over, certain areas. For example, NOAA makes available nearly all of the observations used in its operational forecast models, with some exceptions for proprietary data from commercial entities. But as more private companies try to sell data to NOAA, how will this balance hold? What if those private companies move towards selling actual weather modeling capabilities or services – perhaps a proprietary AI-based weather model – to the government? In the case of expanding commercial data purchases, who is responsible for maintaining and improving our data assimilation capabilities? 

Coordinating many actors across the enterprise, in a manner that most effectively serves our mission to society, will be a key challenge we must navigate in the coming years.

What preliminary recommendations or future directions have you discussed?

Our tentative recommendations revolve around building robustness. We encourage academic organizations who train our future meteorologists to consider how to prepare these students to work in a multidisciplinary capacity, and to embrace data science skills. Not everyone needs to be an interdisciplinary scientist, but it’s vital that our students learn how to apply their deep domain knowledge as part of a team of such individuals.

We also acknowledge that the rise of AI/ML techniques is changing the demands of our computing and data infrastructure. Not only must our workforce learn to adapt to these technologies, but we must consider how the enterprise will support enabling them: for example, by ensuring that in addition to large, traditional high-performance computing resources, we provide access to GPUs and similar tools. As part of this re-evaluation, we must evolve the ways in which we as a community define our priorities for federal research funding

What did you hear from the community at the SCM?

We thank the community for the warm reception to our assessments at the Summer Community Meeting. Many of the themes we touched on – the re-balancing of capabilities across the enterprise, the emergence of AI/ML and its implications, as well as core workforce development concerns – were echoed across many other working groups, underscoring their importance.

Within our group, we also discussed the growing importance of convergence science, which was echoed several times throughout the meeting. Convergence science, which involves coordinating diverse, interdisciplinary research teams with real stakeholders to solve societally relevant problems, is likely to be an important mechanism of translational research in the future, but we (and others at the meeting) identified a need for federal agencies to devote more resources earmarked for this sort of work in order to complement traditional, siloed funding programs.

Want to join a Weather Enterprise Study working group? Email [email protected].

About the Weather Enterprise Study

The AMS Policy Program, working closely with the volunteer leadership of the Commission on the Weather, Water, and Climate Enterprise, is conducting a two-year effort (2023-2025) to assess how well the weather enterprise is performing, and to potentially develop new recommendations for how it might serve the public even better. Learn more here, give us your input via Google Forms, or get involved by contacting [email protected].  

About the AMS Summer Community Meeting

The AMS Summer Community Meeting (SCM) is a special time for professionals from academia, industry, government, and NGOs to come together to discuss broader strategic priorities, identify challenges to be addressed and opportunities to collaborate, and share points of view on pressing topics. The SCM provides a unique, informal setting for constructive deliberation of current issues and development of a shared vision for the future. The 2024 Summer Community Meeting took place August 5-6 in Washington, DC, and focused special attention on the Weather Enterprise, with opportunities for the entire community to learn about, discuss, debate, and extend some of the preliminary findings coming from the AMS Weather Enterprise Study.

AMS 2024 Session Highlight: WRN Asks “What If…?”

Graphic: WRN Asks "What If...?"

Since 2013, the AMS Symposium on Building a Weather-Ready Nation (WRN) has brought together meteorologists and other Weather, Water, and Climate Enterprise partners to discuss efforts in advancing what it means to be “Weather-Ready.” At the 104th AMS Annual Meeting, for the second year in a row, the WRN Symposium will be opening their program Monday morning at 8:30 AM ET in Baltimore with a special, interactive session: “WRN Asks: What If…?” We spoke to one of the program chairs for this Symposium, Trevor Boucher from the National Weather Service, about why this session is unique and why AMS attendees might want to check it out.

What’s so special about this session, and how did it come about?

Trevor: The design and discussion are both very different from a traditional 12-minute presentation or panel session. Weather Ready Nation Symposium was created shortly after the National Weather Service introduced the WRN Initiative as a forum to share lessons learned, successes, and best practices. After a decade of this pursuit, several recurring themes arose: How do we, the Weather Enterprise, target underserved and vulnerable populations? How do we communicate our science effectively? How do we focus on our publics/partners while also maintaining our own well-being? These provocative questions are not easily addressed through the traditional paradigm of science conferences. Last year, the 11th WRN Symposium looked to an interactive, collaborative strategy to address big societal challenges, hosting a special session called, “WRN Asks: What if…?” which embraced the concept of “transformative learning.” We shifted the focus to collective, group discussion, and critically reflecting on what we’ve all learned since 2013.

This year’s “What if…?” session not only fits into the Annual Meeting’s “Living in a Changing Environment” theme but intentionally asks the provocative “elephant in the room” questions that are difficult to have in a traditional session. We designed this session as a “reverse panel,” where moderators provide a 3-minute “state of the science” with respect to their backgrounds and propose an open-ended, “What if…?” question to the audience. Then their role shifts to moderating audience discussion for the remainder of their 20-minute slot. So you might see notable names on the agenda, but they do the least amount of talking. The audience are the true panelists, sharing their opinions, their knowledge, and their concerns about these questions.

Where did this idea come from?

Trevor: To be honest, the design inspiration and name largely came from the Marvel Cinematic Universe (MCU). There is an animated series with the same name that explores how certain character storylines would progress in alternate scenarios or timelines. What would the implications be if certain details of these characters changed? Additionally, the show Black Mirror on Netflix is another inspiration, exploring how some seemingly inevitable technological advancements like AI or cybernetic implants may change our society. Similarly, we wanted to explore “What if…?” scenarios around how our science may look if things progress, change directions, or stay the same.

One of last year’s discussion moderators, Dr. Justin Sharpe, helped us also understand how this style of discussion fits very nicely into the concept of Transformative Learning (Mezirow, 1995, 2000) and engendering critical reflection of the audience. For the chairs, this also helps us reflect on how we craft our scientific discussions each year in our program. The single, double, and triple-loop deutero learning model (below) applies to both the audience and the chairs simultaneously.

Deutero Learning: Single, Double and Triple Loop Learning where single-loop learning is primarily related to considering one’s actions — such as improving efficiency; double-loop learning questions priority-setting, such as how solutions are determined (Argyris and Schön, 1978); and triple-loop learning questions underlying values and assumptions, asking, for example, what our goals may be (Sharpe, 2018, 2021, Sweiringa and Wierdsma, 1992).

The goal for this year’s session is to inspire the following year’s call for abstracts. We will be taking notes on everything discussed from the audience and planning follow-up sessions called “What’s Next?” based on the discussion. We hope people will be excited to contribute to these discussions for years to come.

How did the first “What if…” session go last year?

Trevor: Exceptionally well. Even though it was the first time we tried this and it was the opening Monday morning session of the Annual Meeting, with a LOT of competition for the membership to choose from, we had about 40-50 folks and had no problem with participation. In fact, we had to cut discussions off for all four questions proposed. I honestly think everyone who attended spoke up at some point through the 90-minute session.

My favorite part was an idea from Doug Hilderbrand, the creator of the WRN Symposium. He asked all the students in the audience to raise their hand, and promised they would be prioritized in the discussion, since these topics are likely what they will be grappling with throughout their upcoming careers.

What’s in store for attendees this year?

Trevor: Four new moderators with four new questions! And we have become a bit more emboldened to ask even more provocative questions this year. Some of them are excellent examples of #HowtoStartaMetFight (a popular Twitter hashtag from years ago). I personally can’t wait to see where the discussion takes us. The questions include…

“What if all weather information was probabilistic?”
Dr. Sean Ernst (OU’s Institute for Public Policy Research and Analysis)

“What if there wasn’t a stigma when talking about climate change?”
Jared Rennie (Research Meteorologist – NCEI)

“What if we didn’t change anything?”
Dr. Tanya Brown-Giammanco (Director – NIST Disaster and Failure Studies)

“What if there was no ego in the weather enterprise?”
Matt Lanza (Managing Editor – Space City Weather)

I’ve been on all our coordination calls and dry runs with these folks and we have had to cut short our 90-minute meetings each time because we just can’t help but discuss these important questions — and that’s just 6-7 of us. I really think AMS attendees will find it to be an invigorating way to begin their week in Baltimore.

Read more about the session.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024, the AMS 104th Annual Meeting will explore the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions will explore the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. The Annual Meeting will be held at the Baltimore Convention Center, with online/hybrid participation options. Learn more at annual.ametsoc.org

COVID-19 and the Weather, Water, and Climate Enterprise

by Mary Glackin, AMS President

In normal times, our thousands of AMS professionals and colleagues are completely dedicated to helping people make the best possible weather-, water-, and climate-related decisions. In this COVID-19 period, were not just providing critical information; we are also receiving it. We are each of us following guidance from public health experts and local officials so that we can keep ourselves, our families, and our friends safe and well. We’re joining in the national and global efforts to “flatten the curve.”

amsseal-blueWe all continue to work, but these duties are now competing with new ones: caring for children who would normally be in school, searching for basic necessities that would routinely be in stock on supermarket shelves, protecting elderly friends and family members. With campuses and laboratories shut down, professors and students have scrambled to adjust to online teaching and reimagining plans for field experiments. Nonetheless, critical weather and hydrologic services are provided with sharp eyes for spring floods and convective weather. Preparations for the coming hurricane season are moving forward.

COVID-19 doesn’t “slightly tweak” the task of building a Weather-Ready Nation; it completely rearranges the landscape. Goals of shelter-in-place and evacuation have to be reconfigured for a world where we are advised by health experts to maintain physical separation from others—more than a challenge in a communal evacuation center.

COVID-19 provides a unique learning opportunity for all of us in the Enterprise. We can experience firsthand how even the best-intended top-down risk communication can sound to someone in harm’s way—and step up our own communications accordingly.

Finally, it’s worth noting as AMS embarks on its second century that our founding coincided with the 1918-19 influenza pandemic. The link between weather, water, climate, and public health (enshrined in the AMS seal) has been integral to building a sustainable and resilient world, and it will likely play a larger role in the future.

Thank you for maintaining essential services and supporting research and education during such a critical, difficult time. Stay well, and stay safe—and at the same time, stay focused, on our contributions to a safer, healthier world.

In Celebration: American Weather Enterprise Collaborating to Protect Lives and Property

By Mary M. Glackin, AMS President-Elect, and Dr. Joel N. Myers, Founder and CEO, AccuWeather

In his acclaimed book, The Signal and the Noise, noted statistician Nate Silver examines forecasts of many categories and finds that most forecast types demonstrate little or no skill, and most predictive fields have made insignificant progress in accuracy over the past several decades.  The one exception, Silver concludes, is weather forecasting, which he singles out as a “success story.” We quite agree.

The benefit of improved weather forecasting on human activity over the last 60 years cannot be overstated. As we approach in January the 100th Annual Meeting of the American Meteorological Society, the nation’s premier scientific organization dedicated to the advancement of meteorological science, it seems a fitting time to celebrate all that we have accomplished for the protection of life and property and the substantial benefits to people and business and contemplate the challenges ahead and the path forward to conquer them.

With technology and human knowledge increasingly transforming both weather forecasting and our relationship with it, our success will rest squarely on our ability to embrace transformational change and to recognize and welcome opportunities for collaboration between key facets of the weather enterprise – academic, government and the private weather industry.

The publicly funded National Oceanic and Atmospheric Administration plays a critical role in supporting the entire infrastructure of weather forecasting, which government organizations, such as the National Weather Service, the U.S. military, and privately held organizations rely on. This infrastructure includes observational systems, maintenance and support of numerical weather prediction models, and providing life-saving weather warnings.  Warnings, arguably, are the biggest payoff of weather forecasting with lives and property on the line.

The NWS analyzes and predicts severe weather events and issues advisories and warnings to the general public for their safety and protection. Warning services provided by NWS have improved over the decades. By design, NWS weather warnings cover a broad territory, intended for the widest possible public audience in a region.

While all government weather warnings reaching the public are produced by the NWS, increasingly in today’s digital age they are tailored and delivered almost entirely by private weather providers through news broadcasts and free, advertising-supported mobile phone apps and other digital sources of convenience.  The greatest challenge the weather enterprise faces is ensuring these life-saving weather warnings reach the greatest number of people potentially impacted by hazardous weather with enough advance notice to take proactive steps to remain safe and out of harm’s way. When seconds count in a weather-related emergency, this partnership example significantly extends the reach of the government for greater public safety.

What some may not realize is that when severe weather threatens, companies, such as AccuWeather, pair a deep understanding of client operations with their team of meteorologists to provide vital services, such as custom site and operation specific weather warnings, to clients tailored to their risk thresholds.

recent Washington Post article mistakenly conflated warning services provided by NOAA with custom warning services provided to private clients.

In fact, with example after example, there is no doubt private companies, such as AccuWeather, which has received many AMS accolades for its warnings and expertise, can and do provide valuable warnings and services to private clients. It was unfortunate that a comment said on the fly was taken out of context. Both AccuWeather and AMS view the incident in this light and are continuing to build on their shared history of partnership. AccuWeather works closely with NOAA and NWS to make sure communities and businesses have the best information and warnings they need to stay safe. This partnership has never been stronger.

In fact, there has been a long history of cooperation between the public and private weather sectors.  National Meteorological and Hydrological Services (NMHS), including the NWS, readily source data and intellectual property from private companies to support their mission of saving lives, protecting property, and enhancing the national economy.  This trend is likely to continue in the world of shrinking government budgets and resource allocation.  In turn, private companies leverage technologies, such as the many forecast models provided by NMHS, as the foundation to their own products and services.

As we look ahead to the next 100 years, many challenges impacting the future of the weather enterprise loom large, such as cost and financial pressures, the hyperbolic increasing rate of the capture, storing, processing and analyzing of data, emerging challenges of health and climate change and new accelerating technologies and platforms in the digital age, some of which we cannot yet even conceive.

These sectors of the weather enterprise have their own advantages and efficiencies and together we can most certainly succeed in furthering meteorological advancement if we capitalize on each other’s strengths and work cooperatively and decisively to achieve our larger mission of safety and protection.

All partners in the weather enterprise –government, commercial and academia —  in addition to the support and stewardship of important professional organizations, such as the AMS, the National Weather Association and the American Weather and Climate Industry Association – are essential to meteorological progress, and the sum of our value to the public and business can be far greater than the individual parts.

In the last six decades, each component of the weather enterprise has learned to better understand and appreciate one another and to communicate more effectively and to respect the important contributions of each in the true spirt of cooperation. The greatest example of this is the AMS-championed Fair Weather Report, a study funded by the federal government to generate more harmony across the entire weather enterprise.

Since we began our careers, we have had the privilege of seeing amazing progress in our ability to provide more specific, more accurate, and more useful weather forecasts and warnings, which extend further ahead and have saved tens of thousands of lives and prevented hundreds of billions of dollars in property damage.

With even more and better collaborations between the various facets of the weather enterprise, there is no question the public and our nation stand to benefit from greater safety and better planning. We look forward to continuing our work together to bring about more exciting innovations and enhancements to advance public safety.

Editor’s note: Mary M. Glackin is President-elect, American Meteorological Society. She was formerly the Deputy Under Secretary for Oceans and Atmosphere at National Oceanic and Atmospheric Administration (NOAA) and a Senior Vice President of Science and Forecast Operations at The Weather Company (IBM). Dr. Joel N. Myers is Founder and CEO of AccuWeather

Thanksgiving in March

by Keith Seitter, AMS Executive Director
The past few months have been a period of increased anxiety for many of us in the weather, water, and climate community as we contemplate how changes in the nation’s administration will impact agencies and programs, and, ultimately, how well our science and the services based on it can move forward. Despite the fact that we work in disciplines that routinely deal with uncertainty, it is not easy for us to deal with the particular flavor of uncertainty we have been facing, or to keep it from being deeply unsettling.
At AMS, we have focused on being even more vigilant in working to defend the integrity of the scientific process and in trying to ensure that the best peer-reviewed science is brought to bear on issues facing our country and the world. Recognizing the importance of those efforts—and even with occasional successes in them—does not keep one from becoming disheartened in dealing with our “post-fact world.”
I was feeling particularly discouraged recently as all this weighed on me, and then I realized that what I should be doing is creating the kind of list many of us do on Thanksgiving. Here it is:

  • I’m thankful to be part of a community whose work really matters. And that people become part of this community because they know how much this work matters and they bring dedication and passion to it every day.
  • I’m thankful that the general public appreciates and depends on the work of our community. They look to us every day to help them make decisions both big and small, and put their trust in us to keep them out of harm’s way (even though they may, at times, complain about our efforts).
  • I’m thankful that we can—and do—rely on a scientific process to discern how our environment works so that we can speak with confidence. It is not what we believe, but what we can observe, measure, and objectively model based on known physics that guides us.
  • I’m thankful I work at an organization guided by a Council made up of gifted and dedicated volunteer leaders, and that I can spend my time working with an incredible professional staff.

By the time I got to the end of this list, I was no longer feeling discouraged but, instead, was energized and ready to keep working toward making sure that the best available scientific knowledge and understanding was getting into the hands of policymakers at all levels. We may be in the midst of particularly challenging times, but AMS, as a very highly respected “honest broker” covering the science and services of the weather, water, and climate community, is in a position to be particularly effective in working through those challenges.
(A version of this post appeared in AMS Executive Director Keith Seitter’s “Letter from Headquarters” column in the February 2017 BAMS.)

Space-Based Environmental Intelligence Community Celebrates

bridenstine
by Ron Birk, Northrop Grumman
Over 150 stakeholders in our Space-based Environmental Intelligence community came together December 1 at the U.S. Navy Memorial in Washington, D.C., for a special event co-hosted by the American Astronautical Society and the American Meteorological Society. Key stakeholders from NOAA, NASA, USGS, Congress, the Administration, the European Union, the private sector and academia celebrated accomplishments including the successful launch and deployment of the NOAA GOES R geostationary weather satellite.
There was a buzz throughout the networking event about advancing societal benefits into the future. Dr. Bill Hooke, Associate Executive Director of AMS and author of Living on the Real World, brought his compelling perspective on the value of science for society. Dr. Piers Sellers, acclaimed astronaut and Earth scientist, shared his findings from over 30 years of research and space travel on the value of monitoring our Earth from space in an excerpt from the recently released National Geographic Before the Flood movie.
The audience enjoyed an impressive video prepared by the space-based environmental community (watch for the video to be posted here soon). Major aerospace players, including Ball Aerospace, Harris Corporation, Lockheed Martin, Northrop Grumman, Stinger Ghaffarian Technologies, provided impressive accomplishments linked together to form the value chain from environmental sensors processed into information products to inform emergency responders in saving lives and protecting property for a Weather Ready Nation. The Society of Satellite Professionals International and the European Commission Copernicus program enhanced the video highlighting benefits and capabilities that span the environmental intelligence value chain. The Institute for Global Environmental Strategies, Sustainable earth Observation Systems (SeOS), and the Aerospace Corporation joined in sponsoring the event.
The Honorable Jim Bridenstine (R-OK), House Science, Space, and Technology Subcommittee, arrived just as Tom Fahy announced the Senate passed the Weather Research and Forecasting Act S.1561. Congressman Bridenstine enthusiastically called for the space-based environmental community video to be shared with congressional committees. He emphasized the value of environmental information for severe weather warnings, especially tornados and floods, key to people of Oklahoma and across the nation. He described steadfast support for NOAA operational polar and geostationary weather missions, Joint Polar Satellite System (JPSS) and Geostationary Operational Environmental Satellite (GOES R), and heralded the value of Earth science to monitor the vital signs of our planet with benefits for our economy, protection of life and property, and national security. The Congressman also emphasized progress and plans an increasingly robust Earth observations system, including benefits of being augmented by commercial weather data. A key area identified as a challenge for the community is space situational awareness, recognizing that low Earth orbit is increasingly congested and contested.
Tremendous recognition is due to everyone in the community coming together to make this important enterprise successful and vibrant as we continue into the future. Thanks to all for bringing so much talent and energy to the event.  Our challenge and opportunity is to continue to reach out and expand our community, recognizing that everyone across the U.S. and around the world benefits from quality space-based environmental intelligence.