A Few Takeaways from the “State of the Climate in 2022”

Map of significant global weather and climate anomalies and events of 2022.

Record-high greenhouse gases, sea levels, monsoons, and droughts—and a volcanic vapor injection

By Michael Alexander, Lead, Atmosphere Ocean Processes and Predictability (AOPP) Division, NOAA, and BAMS Special Editor for Climate

The annual NOAA/AMS State of the Climate report has just been released, with a comprehensive global look at the climate in 2022. Produced by the NOAA National Centers for Environmental Information (NCEI) and the American Meteorological Society, the State of the Climate Report maps out the complex, interconnected climate phenomena affecting all parts of the globe. It also charts global progress in observing and understanding our climate system. 570 scientists from 60 countries contributed to this year’s report, including a rigorous peer review, making it a truly global endeavor. 

As the senior editor on this project, I wanted to share with you a few highlights. Click here to read the full report, published as a supplement to the Bulletin of the American Meteorological Society.

New record-highs for atmospheric greenhouse gases CO2, methane, and nitrous oxide.

It was yet another record-setting year for atmospheric carbon dioxide and other greenhouse gases. 2022 saw an average concentration of 417.1 ± 0.1 ppm for atmospheric CO2; methane and nitrous oxide also reached record highs. 

Graphs of yearly global surface temperature compared to the 1991-2020 average for each year from 1900 to 2022, from 6 data records, overlaid on a GOES-16 satellite image from September 22, 2022.  Image credit: NOAA Climate.gov.

Warmest La Niña year on record.

Despite being in the typically cooler La Niña phase of ENSO, 2022 was among the six warmest years on record, and was the warmest La Niña year ever recorded. Summer heat waves left annual temperatures at near-record highs in Europe, China, the Arctic, and Antarctica (parts of Europe set daily or seasonal heat records), and New Zealand experienced its warmest year ever. High-pressure “heat domes” helped elevate local temperatures in many areas, including parts of North America and Europe. 

Record-high global mean sea level and ocean heat.

Global mean sea level reached 101.2mm above 1993 levels, setting a new record for the 11th year in a row. 2022 also saw record-high global ocean heat content (as measured to 2000 meters below the surface), although La Niña moderated sea-surface temperatures.

Image credit: NOAA

Complex climate picture.

Global warming trends continued apace, but of course numerous large-scale climate patterns complicated the picture. In 2022 we saw the first “triple-dip” La Niña event (third consecutive La Niña year) of the 21st century. The Indian Ocean Dipole had one of its strongest negative events since 1982, which led to increased temperatures and precipitation in the eastern Indian Ocean. Along with La Niña, this contributed to record-breaking monsoon rains in Pakistan that caused massive flooding and one of the world’s costliest natural disasters. We also had a positive-phase winter and summer North Atlantic Oscillation affecting weather in parts of the Northern Hemisphere. 

A bad year for drought.

For the first time ever, in August 2022, 6.2% of the global land surface experienced extreme drought in the same month, and 29% of global land experienced at least moderate drought. Record-breaking droughts continued in equatorial East Africa and central Chile. Meanwhile, parts of Europe experienced one of their worst droughts in history, and China’s Yangtze River reached record-low levels.

Warmth and high precipitation at the poles.

2022 was the firth-warmest year recorded for the Arctic, and precipitation was at its third-highest level since 1950. The trend toward loss of multi-year sea ice continued. Meanwhile, Antarctic weather stations recorded their second-warmest year ever, including a heatwave event that collapsed the Conger Ice Shelf, and two new all-time record lows in sea-ice extent and area set in February. On the other hand, record snow/icefall due to atmospheric rivers led to the continent’s highest recorded snow/ice accumulation since 1993.

Image credit: NOAA

Notable storms: Ian and Fiona.

85 named tropical cyclones were observed across all ocean basins, an approximately average number. Although there were only three Category 5 storms, and the lowest recorded global accumulated cyclone energy, the year produced Hurricane Ian, the third-costliest disaster in U.S. history, as well as Hurricane Fiona, Atlantic Canada’s most destructive cyclone.

Massive volcanic injection of atmospheric water vapor.

The Hunga Tonga-Hunga Ha’apai submarine volcano in the South Pacific injected a water plume into the atmosphere of unprecedented magnitude (146+/-5 Terragrams, about 10% of the stratosphere’s total water) and height (reaching into the mesosphere). We don’t yet know what, if any, long-term effects this will have on the global climate, although the increase in water vapor has interfered with some earth system observations. 

The full report is a comprehensive and fascinating analysis of our climate system in the previous calendar year. I urge you to read it and communicate your own takeaways from the State of the Climate in 2022. You can read the press release here.

Infographic at top: World map showing locations of significant climate anomalies and events in 2022. Credit: NOAA.

The Silver Lining of Disaster

There aren’t many reasons to consider a volcanic eruption a positive event, but if results from recent research by Amato Evan of the University of Virginia are confirmed, residents of hurricane-prone areas, at least, may have a new reason to welcome volcanoes. Evan studied the effects of two major volcanic events–the 1982 discharge of El Chichón and Mount Pinatubo’s eruption in 1991–on Atlantic hurricane activity. He found that hurricane frequency and intensity both decreased by about 50% in the year following the eruptions, as compared to the year preceding the eruptions. Smaller decreases were still detected two and three years after the eruptions.
The finding is not entirely surprising. Major volcanic eruptions can expel large amounts of sulfur dioxide into the stratosphere; the gas then reacts with water to form sulfuric acid aerosols, which reflect light and absorb radiation, cooling tropical ocean waters while warming the lower stratosphere. The combination of these changes would be expected to dampen the frequency, duration, and power of hurricanes, which thrive on the temperature contrast between the sea surface and the atmosphere high above.
Evan’s study (subscription only) runs into complications that will need to be addressed before the volcano-hurricane link is accepted. For instance, both the El Chichón and Mount Pinatubo eruptions were also followed by strong El Niño events, which by themselves are expected to suppress hurricane activity. (On the other hand, some research suggests that El Niños can be caused by volcanic eruptions.) Further study of the dynamics in play is necessary.
Convincing people on the coasts that hurricanes themselves are a positive force in their lives may be a bit more difficult. At the annual Governor’s Hurricane Conference in Florida last week, however, attendees looked back at the 20-year legacy of 1992’s Hurricane Andrew with mixed feelings. While it is still the costliest disaster in the state’s history, the storm brought about many significant positive changes. For one, the state government revised emergency management funding so that each county could have a full-time emergency manager on staff. The institutionalization of emergency plans and outreach to residents has paid off repeatedly in subsequent hurricanes. Hurricane Andrew also led to stiffer enforcement of building codes and rethinking of the ways buildings must withstand high winds.
All in all, the silver lining of disaster isn’t great consolation, but the conference, like Evan’s research, gives hope for continued improvement in hurricane forecasting, preparedness, and response.

Special Session Today on the 2010 Icelandic Volcano Eruptions

Iceland's eruptions, 2010: Getting close safely for measurements was one of the problems with observing the initial eruption conditions that affect plume dispersion modeling.

The Eyjafjallajökull volcano eruption in Iceland lasted from the 15 April to 25 May 2010.  In addition to threatening local people and their livestock, the volcano sent an ash plume to heights of up to 26,000 feet. Due to the weather conditions, the plume spread over a large part of Europe. Because volcanic ash can cause airplane engines to fail, the plume disrupted aviation over several weeks.
Weather Services played a key role in  predicting the spread of the ash and advising the aviation industry. The forecasts were based on safety thresholds for flying through volcanic ash set by the International Civil Aviation Organisation (ICAO) along with the national aviation authorities and aircraft manufacturers.
Scientists modelled the evolution of the ash cloud using dispersion  models and trajectory models. The model predictions were compared with  observations from satellites, aircraft and ground-based networks.
Supplemental ash concentration information from the UK Met Office

The eruption of Eyjafjallajökull presented challenges to the meteorological community, especially in Europe.  The event highlighted the importance of enhanced international coordination to ensure a consistency of approach in the observation, forecasting and dissemination of volcanic ash information and warnings.
At the AMS annual meeting, papers covering the observing, forecasting and warning to the public and especially to the airline industry regarding the effects of the eruption of Eyjafjallajökull will be presented today (Monday) at the Special International Applications Session 1B: The Eyjafjallajökull Volcanic Eruption of 2010 (1:30 pm). At 2 pm Ian Lisk of the UK Met Office talks about how the aviation industry, grounded by safety rules, put pressure on meteorologists to produce ash concentration charts to supplement the normal information from the Volcanic Ash Advisory Centre in the UK. This was an added burden on dispersion modeling services (with the NAME model), but the results proved promising:

The largest uncertainty in the computer modelling of ash dispersion and transport is the ability to accurately reflect the status of the eruption at model initialization. This is less of a modelling issue and much more a case of being able to accurately and safely observe what the volcano is doing in real time, in particular, the:
•Height, diameter and time variance of eruptive column;
•Assessment of ash concentration and particle size/distribution;
•Ash deposition close to the volcano i.e. ash that is not available to be transported.

Unlike atmospheric phenomena, volcanic eruptions are in fixed places and don’t condense or disappear out of thin air, like atmospheric phenomena…but apparently observing them isn’t much easier.