Recent Trends in Tropical Cyclone Fatalities in the United States

Satellite photo of Hurricane Gonzalo (a ball of swirling clouds) over the Atlantic near Puerto Rico; other larger cloud systems are seen in the upper part of the photo, eclipsed by the curvature of the Earth in the top right. Photo taken by GOES East satellite at 1445Z on October 14, 2014. Photo credit: NOAA.

New data from the past ten years reveal increased prominence of freshwater floods and indirect fatalities in hurricane deaths

Guest post by Dr. Michael Brennan, Director, National Hurricane Center; Daniel Brown, Warning Coordination Meteorologist, National Hurricane Center; and Leah Pope, Hydrologist, Northwest River Forecast Center

The National Hurricane Center’s mission to “save lives and mitigate property loss” is not just achieved by issuing effective watches, warnings, and forecasts of tropical cyclones. We also spend a large portion of the “offseason” educating the public, emergency managers, and our media partners about the risks that tropical cyclones (TCs), including hurricanes, pose to life and property in the United States. Those include natural hazards such as storm surge, wind, and rip currents, and also includes dangerous conditions in the aftermath of a landfalling tropical cyclone, which may lead to “indirect” fatalities. These are deaths which are not directly due to the forces of the storm, but which would not otherwise have occurred. NHC routinely compiles and assesses TC-related information through vehicles such as our Tropical Cyclone Reports (TCRs). Data from the most recent decade reveal that fatality trends may be changing.  

Note:  The fatality data presented here do not include any fatalities from Hurricane Maria in Puerto Rico, since there was no specific, definitive cause provided for those deaths.

Direct Fatalities

Aerial photo of a peninsula/barrier island that has been breached by a storm surge. Sand, buildings, and other structures have been washed away or damaged, including visible broken lines of sandbags, a damaged bridge, damaged trees, and obliterated buildings; only one house appears to still be standing.
Storm surge damage from Hurricane Ike, Bolivar Peninsula, Texas, 2008. Photo credit: NOAA.

Previous studies by Rappaport (2014) and Rappaport and Blanchard (2016) summarized direct and indirect fatality data from Atlantic basin tropical cyclones in the United States for the 50-year period 1963–2012. During that period, nearly 9 out of 10 tropical cyclone-related direct deaths in the United States were due to water. Storm surge was responsible for nearly half (49%) of the direct deaths, and over one-quarter (27%) were due to rainfall-induced freshwater flooding.  

In response, the National Weather Service (NWS) and NHC worked to improve outreach, education, and communication of storm surge and rainfall hazards. We introduced new real-time storm surge maps in 2014, and in 2017 introduced a storm surge watch/warning that highlights the risk of life-threatening storm surge inundation. 

New Data Suggest Changing Trends

Since 2012, the United States has experienced 21 hurricane landfalls, including 8 major hurricanes, and more than 20 tropical storm landfalls. Eighteen of these hurricane landfalls, including all of the major hurricanes, occurred during 2017–22 after a relatively quiet period. Given the significant number of tropical cyclone landfalls in recent years, and increased deployment of warnings around the storm surge hazard, NHC examined and compared fatality data from the most recent 10-year period (2013–22) to the earlier studies.

Hazard % of direct fatalities from this cause
(1963–2012)
% of direct fatalities from this cause
(2013–2022)
Storm Surge49%11%
Freshwater Flooding27%57%
Wind8%12%
Surf/Rip Currents6%15%
Offshore Marine Incidents6%3%
Tornadoes3%2%
Other1%1%
Note: Due to rounding, numbers may not add up to 100%.

During the most recent 10-year period in the United States, about 57% of direct tropical cyclone deaths were due to drowning from freshwater (rainfall) flooding. Surf and rip current fatalities have become an increasing threat, making up about 15% of direct fatalities in the past decade. These fatalities often occur one or two at a time from distant storms hundreds of miles offshore. Florida, North Carolina, and New Jersey experienced the highest number of TC-related surf and rip current fatalities. Storm surge and wind-related deaths account for 11% and 12% of the direct fatalities, respectively.  

Every hurricane is different, however. Hurricane Harvey in 2017 had the largest number of direct deaths—68, 65 of which were due to freshwater flooding in Texas—in the past decade. Hurricane Ian (2022) was the second deadliest with 66 direct fatalities, 41 of which were due to storm surge in Florida. More than 65% of those who died from direct causes were men, with about 60% of the victims over the age of 60.

Indirect Causes

Image of a boat stranded on land, leaning against a wind-destroyed structure and a power line, amid other debris, including destroyed buildings and cars. Three people stand next to the boat observing the damage.
Aftermath of Hurricane Ike in Galveston, Texas, 2008. Photo credit: NOAA.

The recent study revealed that over the past 10 years there has been nearly an equal number of indirect deaths as direct fatalities. Indirect fatalities are due to a wide range of causes, including traffic accidents (16%), preparation/cleanup accidents (15%), carbon monoxide poisoning (12%), lack of medical care (11%), power problem/electrocution (11%), post-storm heat deaths (9%), unknown causes (9%), cardiac-related deaths (7%), and evacuation-related deaths (5%). 

The largest number of indirect deaths in the past decade occurred in association with Hurricanes Ian (90), Irma (82), Michael (43), Harvey (35), and Laura (34). Most (75%) of the indirect deaths are associated with major hurricane landfalls, which leave communities very vulnerable and often with long-duration, widespread power outages. More than half (57%) of the victims were over the age of 60. Younger victims tended to die in vehicle accidents; for older victims, medical-related issues, heat, evacuation, and other accidents were more likely causes of death.

Improving Warnings and Public Understanding

The results of these most recent studies have led the NWS and NHC to increase messaging on the hazards and causes of both direct and indirect fatalities. We continue to highlight rainfall flooding and storm surge risk through the Weather Prediction Center’s Excessive Rainfall Outlook, Flood Warnings from local NWS offices, and increased emphasis on the Storm Surge Warning. These warnings are the loudest “bells” that the NWS can ring during life-threatening flooding. We encourage our media and emergency management partners to work with us to encourage timely public response and personal preparedness ahead of these threats. 

Additionally, with the increased percentage of rip current fatalities associated with high surf and swells from distant hurricanes, the NWS has created new infographics to explain this deadly beach hazard, and is working on graphics to better highlight the threat in real time.

During the highly impactful 2020 hurricane season in the United States, there were more fatalities associated with carbon monoxide poisoning from the improper use of generators than there were from storm surge. After that season, NHC and the NWS developed infographics and worked with media and emergency management partners to highlight that threat. While it is difficult to determine the effectiveness of that messaging, it is encouraging to know that there were no carbon monoxide related-fatalities in the aftermath of Hurricane Ian in 2022 in Florida, despite its devastating impacts and widespread power outages in that state.   

NHC relies on relationships with media, emergency management partners, and the entire weather enterprise to help reach the public before, during, and after tropical cyclone threats. These efforts undoubtedly increase awareness, encourage preparation, and save lives. We hope to continue to improve our messaging and understanding of the threats and causes of injuries and fatalities to better meet our collective mission.  

Visit the National Hurricane Center online.

Header photo: Hurricane Gonzalo in the Atlantic. Photo taken by GOES East satellite at 1445Z on October 14, 2014. Photo credit: NOAA.

This post was invited based on a presentation given by Dr. Brennan at the 50th Conference on Broadcast Meteorology, which took place in Phoenix, Arizona, June 21–23, 2023. The conference was organized by the American Meteorological Society Board on Broadcast Meteorology and chaired by Danielle Breezy and Vanessa Alonso.

Naming Winter Storms: Time for Community Cooperation

by Mary M. Glackin, Senior Vice President, Public-Private Partnerships, The Weather Company
Forecasts of hazardous weather have continually improved, particularly over the past few decades. It is oft-cited fact that 5-day forecasts are now as good as 3-day forecasts were 20 years ago. At the same time, the public has more choices than ever in how it accesses weather information. In particular, we are seeing explosive growth in the web, apps, and social media outlets such as Facebook and Twitter. Yet in the aftermath of a severe event, it is common to hear, “I didn’t know” either from public officials or the public at large.
It is this latter issue that the United Kingdom’s Met Office and the Irish Meteorological Service (Met Éireann) were seeking to address when they recently announced their plans to name storms this fall and winter. And to kick the campaign off, they are soliciting the public’s help in picking the names. After watching other country’s experiences, they believe naming significant storms will increase public awareness of severe weather and thus improve appropriate responses to warnings.
Several European countries name winter storms. For example, the Free University of Berlin’s meteorological institute has been naming them since the 1950s, and these names are adopted and used by the media and the German Met Service, Deutscher Wetterdienst. In the U.S. and elsewhere, very impactful storms become named by the media; think Snowmageddon in the Northeast (2010) and St. Jude Storm in the U.K. (2013). In the U.S., The Weather Company (TWC) began naming winter storms in 2012-13, citing the importance of communicating in social media–especially Twitter, which requires a hashtag. Rightly or wrongly, this effort was roundly criticized as having suspect science and for being a marketing ploy.
After three years experience at TWC, here is what we can report: Twitter alone provides an incredible reach where we routinely see more than one billion people receiving tweets using the storm name. Millions of tweets are sent using the hashtag from government agencies, school districts, utilities, businesses, and the general public. These hashtags also allow the NWS and others to find real-time weather data tweeted by citizens that can be used in nowcasts and other storm reports.
The criteria to name a storm are pretty simple: it must meet the National Weather Service winter-storm warning criteria, and it must be expected to impact at least two million people and/or 400,000 sq. km. We use a formal process and a committee of three meteorologists to review these criteria for each possible storm, and while we consider the criteria strict, the storm-naming committee still reserves the right to override the quantitative decision in certain circumstances. Some of the factors that may influence decisions to override the naming rules include the degree of historical significance of the event (e.g., accumulating snow in South Florida, a summer-season snowstorm, etc.); see more details here.  The U.K. is planning a similar system using their two highest warning levels, so names are only applied to the storms that present a significant threat.
What’s in a name? Well in this case, the name is the headline to attract attention to the threat. It is the beginning. It needs to be backed up with easy-to-understand information that details the threat to a specific locale and appropriate call-to-action statements. But, in this information-saturated world, this headline/hashtag is key. We need to recognize the importance of serving people in the way they find easiest to consume information vs. how we are most comfortable in delivering it.
Could we take this U.K./Ireland announcement as a call to the U.S. weather enterprise to come together to see how we could maximize the use of social media to improve the public response to severe weather events?  Twitter is here to stay, and it requires hashtags to separate the relevant information from an avalanche of incoming data. Hashtags are spilling over into other social media as well. It is easy to create a hashtag from a tropical storm name. If we could come together as a community to address this for winter storms, we’d no doubt learn a lot that could then be applied to significant weather at the local scale. The nomenclature could be something much different than what’s used in tropical storms or what we have been using.
What’s important is to lead as a community in this social media era. For our part, we are willing to share our experiences, transition our system, and/or help set up an enterprise-wide naming system. During major snow events, the reach on Twitter has been over a billion. What would our reach be with all of us working together feeding into the same system to keep people informed during these hazardous events? Are we ready to re-engage on this topic as a community?