What’s the Future of Weather Decision-Making?

A 2024 AMS Summer Community Meeting highlight

Matt Corey

The AMS Summer Community Meeting drew exceptional attendance and engagement this year as people across sectors helped inform an upcoming report on the Weather Enterprise. The AMS Weather Enterprise Study will provide a comprehensive picture of the shifting landscape of weather-related fields to inform our joint future. At the 2024 SCM, working groups discussed what they’d found about key issues facing the enterprise, and asked for feedback from the community.

Here are a few takeaways from the Decision Support Services working group, as reported by Matt Corey (pictured at left) of Microsoft Weather. Decision support services (DSS) help stakeholders make weather-related decisions that are informed by the best available knowledge across fields. They are crucial for emergency managers and many other decision makers, as well as members of the public.

How has the decision support landscape shifted in the last decade or so?

Stakeholders for DSS range from an emergency manager making critical decisions about an entire community to an everyday citizen making a decision for themselves or their family. For decision support services, the last two decades have seen an abundance of technology changes which have allowed stakeholders easier access to information. However, this can be both a benefit and a challenge, as misinformation has also become more readily available.

What were the main themes that came out of your working group’s discussions?

The themes that emerged for us included:

  • The different sectors of the Weather Enterprise have become coupled, with less well-defined boundaries when it comes to providing decision support.
  • New players are entering the enterprise, with growing AI and novel ideas.
  • Developing and maintaining the necessary workforce is a concern.
  • There are increased opportunities for translating forecasts into easily understood language in order to support decisions.
  • There is a need for increased funding for quality observational datasets for many applications, especially in AI.
  • In a complex, misinformation-rich environment, there is still room for all sectors to tailor communications to stakeholders, but there is also concern about maintaining consistency in order to maintain trust.
  • Embracing user centric design to understand stakeholder concerns, technical levels, and understanding is important, including the use of probabilistic information.  Example:  “There is an 80% chance the flooding will happen this afternoon.”

What are the main challenges you have identified?

In our group, the discussion continues to be about who should be providing decision support services. As the NWS gets more involved in DSS, one concern is for increased friction from some private sector entities. Another key point is that DSS is not limited to a specific stakeholder type. DSS is important to all citizens who need to make decisions involving weather every day, thus there is a shared dimension and need for responsible and clear messaging to all stakeholders (including the tactical use of probabilistic information). 

A final recurring theme is around the workforce itself. Forecasters need to be taught communication skills, and social science is critical in helping to understand the needs and problems to be solved for the end users. With the focus shifting to newer tools including AI-infused capabilities, there is a concern that the new workforce will lose the necessary skills critical in conveying adequate decision support services.

What preliminary/tentative recommendations, solutions, or future directions have you discussed?

Some of the recommendations we’re working with right now focus on:

  • Integration of weather, water, and climate information with socioeconomic and biosphere information for earth system forecasts.
  • Cross-sector support of ecological forecasts and environmental early warning systems (for example, warnings of fishing industry impacts due to warmer water) to benefit society and facilitate impact-based action.
  • Improved communication about weather impacts, especially in a changing climate, using common terms and learnings based on stakeholder’s decision needs.
  • Embracing AI as a way to increase the velocity of forecasts, integrate probabilistic information into forecasts, and increase efficiency for both short-term services like nowcasting and long-term climate solutions for all.
  • Helping meteorologists to become the communicators that they should be. Leveraging AI solutions and tools to help make them more efficient at helping stakeholders with their decisions.
  • Expanding opportunities for smaller businesses/individuals to obtain specialized DSS.
  • Increased public awareness of changing weather patterns stimulating the need for better accuracy, earlier warnings, and long-range projections.
  • The need to smartly integrate probabilistic information to help stakeholders better understand forecasts and limitations.

Want to join a Weather Enterprise Study working group? Email [email protected].

About the Weather Enterprise Study

The AMS Policy Program, working closely with the volunteer leadership of the Commission on the Weather, Water, and Climate Enterprise, is conducting a two-year effort (2023-2025) to assess how well the weather enterprise is performing, and to potentially develop new recommendations for how it might serve the public even better. Learn more here, give us your input via Google Forms, or get involved by contacting [email protected].  

About the AMS Summer Community Meeting

The AMS Summer Community Meeting (SCM) is a special time for professionals from academia, industry, government, and NGOs to come together to discuss broader strategic priorities, identify challenges to be addressed and opportunities to collaborate, and share points of view on pressing topics. The SCM provides a unique, informal setting for constructive deliberation of current issues and development of a shared vision for the future. The 2024 Summer Community Meeting took place August 5-6 in Washington, DC, and focused special attention on the Weather Enterprise, with opportunities for the entire community to learn about, discuss, debate, and extend some of the preliminary findings coming from the AMS Weather Enterprise Study.

Can Decarbonizing the Electric Grid Help Avert Climate Catastrophe?

Photo by Harry Cunningham @harry.digital: https://www.pexels.com/photo/photo-of-wind-turbines-under-cloudy-sky-3619870/

A Presidential Session Spotlight from the AMS 104th Annual Meeting

By Katie Pflaumer, AMS Staff

Significantly reducing greenhouse gas emissions requires transitioning primarily to carbon-free sources for energy generation, but many challenges stand in the way. What are these challenges, and how can the weather, water, and climate sector help meet them?

A Presidential Session at the 104th AMS Annual Meeting addressed those questions with panelists Debbie Lew (Executive Director at ESIG, the Energy Systems Integration Group), Alexander “Sandy” MacDonald (former AMS President and former director of the NOAA Earth Systems Research Laboratory), Aidan Tuohy (Director of Transmission Operations and Planning at EPRI, the Electric Power Research Institute), and Justin Sharp (then Owner and Principal of Sharply Focused, now Technical Leader in the Transmission and Operations Planning team at EPRI). Here are some key points that arose from the session, titled, “Transition to Carbon-Free Energy Generation,” introduced by NSF NCAR’s Jared Lee, and moderated by MESO, Inc.’s John Zack.

Key Points

  • Decarbonizing the electric grid is key to reducing U.S. greenhouse gas emissions.
  • Wind and solar are now the cheapest forms of energy generation; adoption is increasing, but not fast enough to catch up with the likely growth in demand. 
  • Energy demand is rapidly increasing, driven by the expansion of data centers, AI applications, crypto mining, and the electrification of transportation and heating. Hydrogen production might greatly increase future loads. 
  • Massive buildouts” of both renewable energy plants AND transmission infrastructure are required to reduce emissions. 
  • A reliable and affordable power system with large shares of wind and solar generation requires accurate historical weather information to inform infrastructure buildout, and accurate forecasts to support operations. 
  • To avoid expensive infrastructure that’s only used during peak times, electricity pricing must incentivize consumers to avoid excessive use during periods of high demand. This requires accurate weather forecasting. 
  • Connecting the three main national grids together into a “supergrid” could improve transmission and grid flexibility, significantly reducing emissions.

The need for carbon-free energy is urgent

Greenhouse gas emissions are still increasing sharply. In response, global temperatures are rising faster than even the most pessimistic models would have predicted a few decades ago, noted Lee in his introductory remarks to the panel. The U.S. is the second largest global carbon emitter, despite having a much smaller population than the other top emitters, China and India.

If we don’t solve the greenhouse gas problem by mid-century, warned MacDonald, we will soon hit 700 ppm of carbon dioxide in the atmosphere. If that happens, “We’re back to the Miocene era,” he said, referencing an exceptionally hot period around 12.5 million years ago. “Northern Hemisphere land temperatures will be 11 degrees Fahrenheit warmer. Arctic temps will be 17°F warmer, which is probably going to launch a huge permafrost thaw … The ocean will be 80% more acidic. So we are in an urgent situation.”

What’s the path to a more sustainable future? Decarbonizing the grid.

The energy sector is one of the top sources of U.S. emissions—and reducing emissions there will have knock-on effects in buildings and transportation. Lee noted that wind and solar power have dropped dramatically in price, becoming the cheapest forms of energy generation available. This has led to an increase in adoption: renewables are now second only to natural gas in terms of electrical power generated in the United States. Yet natural gas is still growing fast, and still far exceeds the use of renewables.

Therefore, Lew said in her talk, we need “massive buildouts of [wind, solar, and battery] resources … doubling or even tripling the amount of installed capacity. We’re going to be electrifying buildings, transportation, industry [and] massively building out transmission and distribution networks … And we’re going to be using fossil fuel generators for reliability needs.” Doing this could get us to 80-90% fossil-free energy production.

Bridging the gap

But what about that last 10–20%?

“We need some kind of cost-effective, clean, firm resource” to fill in the gaps and act as a bridge fuel—a resource that’s available 24/7 no matter the weather or season—said Lew. This resource might end up being hydrogen, advanced nuclear energy, or even green bioenergy with carbon capture and sequestration to offset emissions from natural gas. “We need all options on the table.”

Weather? Or not?

Trying to transition to renewables without incorporating reliability and resilience will lead to blackouts and power outages, Tuohy noted. These would have major economic consequences and reduce the political viability of renewables, as well as leading to unjust allocation of energy.

A resilient grid, he said, requires enough energy production to meet future demand; adequate transmission and delivery infrastructure to meet future needs and to balance supply with demand moment-to-moment every day; reliability despite constant shifts in energy production; and the ability to prevent a problem in one place from causing cascading outages across the system. 

Making a new, wind- and solar-dependent grid truly work means balancing—and forecasting—energy availability and demand across the nation, accounting for the current and predicted weather at each solar and wind energy site, as well as how climate change will affect resource availability. This means a massive meteorological infrastructure must be created.

Read our upcoming post from Justin Sharp to learn more about how weather and renewable energy must work together.

“[This is] an operational need, not a research project … There’s an imperative to have dedicated, accurate, and expertly curated weather information to support the energy transition.”

—Justin Sharp

Uncertainty

Demands on the grid are now subject to extreme variability, not just from weather and climate, Tuohy said. For example, demand projections from 2022 versus 2023 were radically different because of new energy-intensive data centers coming online.

“We’ve gone from a kind of deterministic system — [in which we] had good sense of, our peak demand’s going to happen in July—to a far more stochastic and variable type, both on the demand and the supply side,” said Tuohy. We have a lot of data and computational tools, but we must be able to bring those datasets together effectively so we can analyze and predict change. “We need to … develop tools that account for [uncertainty].”

Changing behavior

The infrastructure required for the necessary expansion of renewable energy generation will be expensive. Keeping the cost manageable means not wasting money to build extra infrastructure that’s only useful during times of peak demand. That means we need to avoid high peaks in energy use.

We know that people can be a lot more conscientious about energy consumption if they think it will save them money. Yet many consumers are currently sheltered from the financial consequences of overloading the grid. “There’s tremendous flexibility in load if you … expose consumers to better price signals,” Lew said.

Consumers could be financially incentivized, for example, to choose off-peak times to turn on a heater or charge an electric vehicle. Such programs should be carefully designed to minimize negative impacts on vulnerable consumers, but the fact remains that to keep those consumers safe, the climate crisis must be confronted.

Supergrid to the rescue?

The main problem with a renewable energy grid, the speakers acknowledged, is transmission—both connecting new generators and moving energy based on supply and demand. “You’ve got to be able to move wind and solar energy around at continental scales,” said MacDonald. A study by ESIG suggested that simply adding a 2-gigawatt transmission line connecting the Texas power grid with the Eastern U.S. power grid would effectively act like 4 GW of extra electricity generating capacity across the two regions, because their grids experience risk and stress at different, complementary times.

A 2016 paper MacDonald and colleagues published in Nature Climate Change suggests that U.S. electricity-sector carbon emissions could be decreased by 80% — with current technology and without increased electricity costs — if the United States can implement a “supergrid.” That means connecting all three major electrical grids currently serving the continental United States. When it’s sunny in San Jose and snowing in Cincinnati, you could transmit solar-produced energy to keep Ohio homes warm, rather than generating extra power locally. 

It will take a lot of effort, but “if we [start implementing a supergrid] now, in a 40-year transition, we can preserve the environment we have,” MacDonald said. “If we wait until the 2040s, we are basically going to devastate the planet’s life for thousands of years.”

You can view all the AMS 104th Annual Meeting presentations online. Watch this Presidential Session.

Photo at top: Harry Cunningham on Pexels (@harry.digital)

Trailblazer meteorologist Eugenia Kalnay (1942–2024)

Eugenia Kalnay two photos

We stand on the shoulders of gentle giants

By Anjuli S. Bamzai, PhD, AMS President

Last month, we lost a giant in the field of meteorology. Through the course of her illustrious career, Eugenia Kalnay pioneered not only the fundamental science and practical applications of numerical weather prediction, she also influenced many careers. Her scientific contributions and leadership led to improved forecasts, helping save lives and property across the globe and making U.S. weather and seasonal climate prediction world-class. 

Kalnay had deep ties with the AMS. In 1982, she became a Fellow of the AMS. She was elected to the AMS Council in 1995. In 2015, a named Symposium was held in her honor at the 95th AMS Annual Meeting in Phoenix. The list of awards she received from the AMS includes the following: Jule G. Charney Award (1995), Joanne Simpson Mentorship Award (2015), Honorary Member (2015), and the first ever Jagadish Shukla Earth System Predictability Prize (2024).

Kalnay receiving the Joanne Simpson Mentorship Award in 2015 from AMS President William Gail. (Photo credit: AMS)

Kalnay exemplified simple living and high thinking. She demonstrated how one can, through grit and determination, overcome unforeseen obstacles and achieve what one sets out for oneself. In 1966, having completed her undergraduate degree, she was working as a meteorology research assistant at the University of Buenos Aires, when a military coup occurred in Argentina. In its wake, mass resignations and disruptions on campus made it untenable for her to continue to work there. Through the timely support and intervention of Dean Rolando Garcia, she got an opportunity to pursue her studies in meteorology at MIT. Her graduate advisor was Jule G. Charney. 

The rest of her story will go down in the annals of meteorology.

In 1971 she became the first female PhD and, two years later, the first female professor in the MIT Department of Meteorology. She was a role model for other women that followed, including Paola Malanotte-Rizzoli and Inez Fung, pioneers in their own right. She later moved to NASA’s Goddard Space Flight Center Laboratory for Atmospheres; in 1984, she became Head of the Global Modeling and Simulation Branch. From 1987 to 1997, she worked as director of the National Centers for Environmental Prediction (NCEP) Environmental Modeling Center at NOAA. 

Her efforts and leadership in data assimilation approaches at NCEP led to substantive improvements in weather forecast models. The data assimilation approaches she developed at NCEP, along with the “breeding method” she created with Zoltan Toth, helped improve weather forecasts, making a useful 10-day forecast possible. 

Kalnay spearheaded a major reanalysis project of 40+ years of global climate data there (and later, 50- and 60-year reanalyses), which became a keystone for climate science. The 1996 paper in BAMS describing the 40-year reanalysis project has, at last count, been cited a staggering 35,330 times, making it one of the most widely referenced articles in geosciences. According to the American Academy of Arts & Sciences, “The reanalysis is certainly the most scientifically fertile dataset in climate science since its creation (and perhaps for all time).” 

The 50-year reanalysis data set was distributed as a CD-ROM at an AMS annual meeting. It was a precursor for other reanalysis datasets that followed, such as paleo reanalysis and climate of the 20th century.

<<The NCEP/NCAR 40-year Reanalysis Project paper was published in 1996 in the Bulletin of the American Meteorological Society.

After retiring from federal service, Kalnay returned to academia and was appointed Robert E. Lowry Chair of the School of Meteorology at the University of Oklahoma. In 1999, she joined the Department of Atmospheric and Oceanic Science at the University of Maryland, College Park. She subsequently served as Distinguished University Professor and was an active researcher till the end.

In 2002 she published a book entitled Atmospheric Modeling, Data Assimilation and Predictability. It is now in its fifth edition, and has been translated into Chinese and Korean.

Left: Kalnay’s book, published in 2002. Center: Kalnay with Ron McPherson (left) and Louis Uccellini (right), both past AMS Presidents and former NCEP Directors, at the Symposium of the 50th Anniversary of Operational Numerical Weather Prediction, June 2004 (photo credit: NOAA NCEP). Right: Kalnay and two of her colleagues, Sumant Nigam and Zhanqing Li, were featured on the cover of the May 2004 issue of Science. The article highlighted foreign-born meteorologists from the University of Maryland, College Park’s Department of Atmospheric and Oceanic Science.

A 2010 interview in the WMO Bulletin gives us a glimpse into Kalnay’s passion for meteorology.  

“I’m lucky to be working in atmospheric sciences,” she said. “It’s a fascinating subject. Working in meteorology is like working in physics, but without the danger of anybody saying, ‘So why are you doing that? What is the use?’ What we do is incredibly useful, especially since it is not national or regional, but global.”

In the past decade or so, Kalnay had been working on the leading-edge topic of climate change and sustainability, recognizing, as she and her colleagues wrote in a 2023 paper, that “the Earth is a very large and complex system that consists of human and natural components interacting bidirectionally with each other.” She and her team — which included Safa Mote and Jorge Rivas, Kalnay’s son — were extending concepts from weather forecasting, such as uncertainty, high sensitivity, and error propagation, to the coupled human-Earth system, and tackling its dynamic interactions.

Earth Day 2022: Safa Mote, Eugenia Kalnay, and Anjuli Bamzai. (Photo credit: Anjuli Bamzai)

Eugenia Kalnay was not only an active scientist who published her results in top-notch journals, she also engaged in practical applications of the science and promoted the kind of international collaborations that continue to advance atmospheric science for the benefit of global communities and economies. She was a member of the National Academy of Engineering (NAE), Foreign Member of the Academia Europaea and Argentine Academy of Physical Sciences, and 2009 winner of the International Meteorological Organization (IMO) Prize. 

Eugenia inspired the next generation of scientists in the field, across many countries. She always maintained her academic connections to Argentina, including teaching courses and supervising research theses at the University of Buenos Aires, which granted her an honorary doctorate. She also has a women’s soccer team there named after her: Eugenia Kalnay FC!

Eugenia Kalnay was a major influence in Argentina as well as globally. Left: Kalnay (front row, second from right) with her mentor, Rolando Garcia (front row, far right) and her mentee, eminent atmospheric scientist Carolina Vera (center) in 2003, when Eugenia was designated member of the Argentina Academy of Exact and Natural Sciences. Top right: Kalnay with members of the Eugenia Kalnay football team. Bottom right: The full Eugenia Kalnay FC team. (Photo credit: Carolina Vera)

She was a beloved mentor, who was concerned not only with science but also nurturing people’s promise, collectively and individually—including advancing women in the field. An interview with the Inter-American Network of Academies of Sciences showcases some of the wisdom she left for us:

Of course, women should be in science!  Why would one even think of wasting the brains of half of the scientifically inclined population?

The most important advice is to work on what you like to do, without worrying about money or recognition, which will come if you put passion in your work.

Learn to speak clearly, briefly and forcefully, and don’t allow others to interrupt you!

She was a kind a generous soul, and her unstinting generosity in providing advice, encouragement, leadership and inspiration will be missed. Her enduring legacy will be a beacon of light for generations to follow.

When I posted the sad news of her passing on the AMS Open Forum, there was an outpouring of condolences from every quarter of the globe. 

Even as we grieve our loss, we celebrate her tremendous contributions and leadership.

Photos at top of post: Left: Eugenia Kalnay (photo credit: John Consoli, University of Maryland). Right: Kalnay and her son Jorge Rivas at the 2024 AMS Awards ceremony, where she received the Jagadish Shukla Earth System Predictability Prize (photo credit: AMS).

Anjuli is grateful to Katherine ‘Katie’ Pflaumer for providing useful edits.

Key Takeaways from the “State of the Climate in 2023”

Glacial retreat at ice worm glacier

Earth hit record highs in global temps, greenhouse gases, sea level, and more last year.

By AMS Staff

Last year, global high temperatures, warm oceans, and massive wildfires broke records and sparked increasing concern about climate change. Now the annual State of the Climate report, produced by the National Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI) and peer reviewed and published by the American Meteorological Society, gives us an in-depth global picture of 2023, a year of extremes. 

According to the NOAA/AMS press release, the State of the Climate report this year includes contributions from more than 590 scientists from 59 countries, and “provides the most comprehensive update on Earth’s climate indicators, notable weather events, and other data collected by environmental monitoring stations and instruments located on land, water, ice and in space.”

Below are a few highlights from 2023.

Record-high greenhouse gases (again)

Global atmospheric carbon dioxide, methane, and nitrous oxide all reached higher concentrations than ever recorded. CO2 was 419.3±0.1ppm, 2.8 ppm higher than in 2023 and 50% higher than pre-industrial levels. This is the fourth-largest recorded year-to-year rise in CO2.

Record-high global temperatures

2023 officially beat 2016’s record as the hottest year overall since records began in the 1800s, partly due to the transition from La Niña to a strong El Niño. Globally, 2023 was 0.99°–1.08°F (0.13°–0.17°C) above the 1991–2020 average. The years 2015–2023 have been the hottest nine years on record.

Global Surface Temperatures Were Above Average Across Most of the World (Plate 2.1a in State of the Climate in 2023): During 2023, much-warmer-than-average conditions were observed across most of the world’s surface, with the largest positive temperature anomalies across parts of the higher northern latitudes, shown here as areas shaded from orange to red. Limited areas experienced near-average to cooler-than-average conditions (blue shading). [Note: graphic shows 2023 average temperature anomalies above or below the 1991-2020 average global temperature.]

North America overall experienced its warmest year since records began in 1910, including a heat wave in Mexico that killed 286 people. The Caribbean also experienced its warmest recorded year, and Europe its warmest or second-warmest depending on the analysis.

In Kyoto, Japan, the cherry trees reached peak bloom on March 25, the earliest bloom in the city’s 1,200-year record. Photo: Balazs Simon on Pexels.

Record-high ocean heat

El Niño also contributed to the hottest oceans ever recorded. Mean annual global sea-surface temperature was 0.23°F (0.13°C) higher than 2016’s previous record, and August 22, 2023 saw an all-time high daily mean global sea-surface temperature of 66.18°F (18.99°C). Marine heat waves were recorded on 116 days of 2023 (vs. the previous record of 86 days in 2016) and global ocean heat content down to 2,000 feet also reached record highs.

Record-high sea levels (again)

Global mean sea level rose 8.1±1.5 mm in 2023, to reach a record 101.4 millimeters above the average from 1993, when satellite measurements began.

Massive wildfires caused by heat and drought

37 million acres of Canada burned in 2023, twice the previous record, causing evacuations for more than 232,000 people and with smoke affecting cities as far away as western Europe. Australia experienced its driest August–October since 1900, leading to millions of acres burned in bushfires in the Northern Territory. The European Union experienced its largest wildfire since 2000 (in the Alexandroupolis Municipality of Greece). Notable wildfires also occurred in Brazil, Paraguay, and in the U.S. state of Hawaii.

Warm poles and a greener Arctic

2023 was the fourth warmest year in the Arctic in the 124-year record, and the warmest recorded June–September. Sea ice reached its fifth-lowest extent in the 45-year record (with many monthly and daily records set), and multi-year ice declined. Despite above-average spring snowpack in the North American and Eurasian Arctic, rapid melting led to record and near-record lows in snow-water equivalent by June. The Northern Sea Route and Northwest Passage both opened, and the Northwest Passage saw a record 42 ship transits. Arctic tundra vegetation reached its third-greenest peak in the 24-year record. 

Much of Antarctica also experienced well-above-average heat. In addition, eight months, and 278 days, saw record lows in sea ice extent and area in Antarctica; daily sea ice extent on 21 February was the lowest ever recorded.

Clean infrared image of Hurricane Otis making landfall near Acapulco, Mexico. Image captured on 25 October, 2023, at 5:20 UTC, by the ABI instrument aboard the GOES-East satellite. Source: NASA Worldview.

Below-average tropical cyclone activity, yet notable storms

There were 82 named tropical storms in 2023, below average. However, global accumulated cyclone energy was above average, rebounding from 2022’s record low, and there were seven Category 5 cyclones. Tropical Cyclone Freddy became the longest lived tropical cyclone on record, lasting from February 6 to March 12; it made landfall three times and caused 165 fatalities in Mozambique and 679 fatalities in Malawi due to flooding and landslides. Typhoon Doksuri/Egay was the costliest economically, causing US$18.4 billion in damages; Beijing saw its heaviest recorded rainfall and 137 residents died in flooding. Rain and floods from Storm Daniel killed at least 4,300 people in Libya. Hurricane Otis underwent the most extreme rapid intensification on record—Category 1 to Category 5 in only nine hours—and became the strongest landfalling hurricane to hit western Mexico, devastating Acapulco.

Persistent ozone hole

The stratospheric ozone hole over Antarctica appeared earlier in the year and lasted longer than normal, and reached its 16th largest extent in 44 years.

The full State of the Climate report includes regional climate breakdowns and notable events in every part of the world. Read the full 2023 report here. Read a summary of key takeaways here.

Image at top: Ice Worm Glacier in the North Cascade mountains of Washington, United States, which was under continuous annual monitoring from 1984 onward and disappeared in 2023. Large photo: The location of former Ice Worm Glacier on 13 August 2023. Inset photo: Ice Worm Glacier on 16 August 1986. Photo credits Mauri Pelto.

Addressing Extreme Heat and Climate Change Adaptation

Jessica Stewart at the AMS 2024 Science Policy Colloquium

Reflections on the 2024 AMS Science Policy Colloquium

By Jessica Stewart, MHA, MPH, student DrPH, The George Washington University

Note: This is a guest blog post; it represents the views of the author alone and not the American Meteorological Society or the AMS Policy Program. The Science Policy Colloquium is non-partisan and non-prescriptive, and promotes understanding of the policy process, not any particular viewpoint(s).

The 2024 AMS Science Policy Colloquium was a deeply enriching experience, offering valuable insights and fostering new connections. As a second-year doctoral student focusing on climate change adaptation and interest in integration of policy and governance, I found the colloquium’s session discussions to be both inspiring and pivotal for my research and professional growth.

Insights into Policymaking

The colloquium provided a detailed exploration of the policy-making process, which I’ll admit I did not fully understand at first. The sessions highlighted the crucial role of effectively communicating scientific findings, showing how this communication can significantly shape policies affecting our world. This realization drove home the impact and importance of my own dissertation research. Engaging with policymakers and federal officials gave me a real-world perspective on the complexities of policymaking and the collaborative efforts needed to enact meaningful changes.
Networking with a diverse group of students, agency professionals, scientists, and industry leaders was invaluable. These interactions offered fresh perspectives on my research interests and opened doors for future collaborations.

Integrating Climate Change Adaptation into Policy

I was able to find a community of other students and agency professionals who were actively engaged in extreme heat research, and we started sharing ideas—a topic that is particularly significant to me as I thought about my home state of California. California has faced increasingly severe heatwaves and droughts, which have serious effects on public health, infrastructure, and ecosystems. These extreme weather events not only strain the healthcare system but also damage critical infrastructure, such as roads, bridges, and water systems. Additionally, they disrupt the balance of natural environments, leading to loss of biodiversity and increased risk of wildfires.

My research interests explore how new technologies, predictive modeling, and resilient infrastructure can be used to adapt to the escalating challenges of climate change. Making sure these technological solutions fit into policy frameworks is key to their success and long-term sustainability. Policies need to be effective and forward-thinking to accommodate emerging technologies and integrate scientific research into practical applications. This alignment ensures that innovations are not only developed but also effectively implemented, providing real-world benefits and enhancing the resilience of communities against the growing threats posed by climate change.

The dynamic discussions on science, technology and its far-reaching impacts were incredibly insightful. This is one of the many products of the colloquium, this vibrant exchange of ideas and solutions, showcasing a united commitment to tackling today’s challenges and preparing for a more resilient future.

Moving Forward

The AMS Science Policy Colloquium has profoundly deepened my understanding of the intersection between science and policy. The insights and connections I gained will significantly enhance my contributions to the field of science. It was an incredibly enriching experience, providing invaluable insights, professional connections, and strengthened my sense of purpose.

About the AMS Science Policy Colloquium

The AMS Science Policy Colloquium is an intensive and non-partisan introduction to the United States federal policy process for scientists and practitioners. Participants meet with congressional staff, officials from the executive office of the President, and leaders from executive branch agencies. They learn first-hand about the interplay of policy, politics, and procedure through legislative exercises. Alumni of this career-shaping experience have gone on to serve in crucial roles for the nation and the scientific community including the highest levels of leadership in the National Weather Service, the Office of Science and Technology Policy (OSTP), the National Science Foundation, and the U.S. Global Change Research Program (USGCRP), and AMS itself.

Asian American and Pacific Islander Heritage Month Spotlight: Dr. Syukuro “Suki” Manabe

By Anjuli S. Bamzai, AMS President

My graduate advisor at George Mason University, Dr. Jagadish Shukla, displayed the photos of four meteorologists in his office: Drs. Norman A. Phillips, Jule Charney, Edward Lorenz, and Syukuro “Suki” Manabe. All giants in their field, they had been his PhD advisers at Massachusetts Institute of Technology (MIT). In the 1990s, as I pursued my graduate degree at Dr. Shukla’s Center for Ocean-Land-Atmosphere Studies (COLA), the scientific family tree remained strongly connected, and so I in turn had the chance to cross paths with luminaries like Manabe in person.

Suki Manabe photo

Circa 1994, I had the privilege of hearing Manabe–or, as I came to refer to him, Suki-san–give the inaugural talk at the newly established COLA. He spoke about the use of dynamical general circulation models to study the atmosphere and its coupling to land, using a simple ‘bucket’ model to discover emergent properties of this complex, chaotic system. He was an animated speaker; it was apparent that he was driven by curiosity and sheer love of the science that he was pursuing.

I was inspired by his ability to explain the properties of such a complex system as the Earth in such elegant terms. Suki-san’s clarity and scientific passion resulted in contributions to our understanding of climate the importance of which cannot be overstated. As I began my own foray into Earth system science, those initial interactions were a formative experience.

Left: Suki-san enjoying his work. Photo courtesy of Dr. V. Ramaswamy.

The models he used were relatively simple compared to the complex Earth system models of today. Yet Manabe and Wetherald (1967), published in the AMS’s Journal of the Atmospheric Sciences, is arguably one of the most influential papers in climate science. It demonstrated a key feature of the atmosphere with an increase in carbon dioxide: rising temperatures closer to the ground while the upper atmosphere got colder. If the variation in solar radiation was primarily responsible for the temperature increase, the entire atmosphere would have gotten warmer.

Graphic from Phys.org, based on Manabe and Wetherald (1967), Figure 16, “Vertical distributions of temperature in radiative convective equilibrium for various values of CO2 content.”

The work that Suki-san and his team conducted comprised a major component of the 1979 report, “Carbon dioxide and climate: A scientific assessment.” Led by Jule Charney from MIT, it is now commonly referred to as the Charney Report. The main result of the succinct 22-page report was that “the most probable global warming for a doubling of [atmospheric] CO2 [is] near 3°C with a probable error of ± 1.5°C.” Perhaps most importantly, the report ruled out the possibility that increasing CO2 would have negligible effects. This estimate of climate sensitivity has pretty much withstood the test of time; in the past forty years, annual average CO2 concentrations increased by ~ 21% and the global average surface temperature increased by ~0.66°C. How prescient!

Suki-san was one of the panelists who shared their insights at a session that the National Academy of Sciences’ Board on Atmospheric Sciences and Climate (BASC) convened during its November 2019 meeting to commemorate the 40th anniversary of the Charney Report. Suki-san’s concluding slide pretty much summed up his philosophy: make your model just as complicated as it needs to be, no more. (See photo below.)

Panelists photo and concluding slide. Slide text says, "Concluding Remarks: 
[Bullet point one] Satellite observation of outgoing radiation over annual and inter-decadal time scale should provides macroscopic constraint that is likely to be useful for reducing large uncertainty in climate sensitivity.
[Bullet point two] It is desirable to make parameterization of subgrid-scale process 'as simple as possible', because simpler parameterization is more testable."
Left: Panelists at the November 21, 2019 session on The Charney Report: Reflections after 40 years at the BASC meeting. (Left to right) Drs. Jagadish Shukla, former student of Jule Charney; D. James Baker, member of the original authoring committee; Jim Hansen and Syukuro Manabe, major contributors to the original report; and John Perry, staff lead for the report. Right: Dr. Manabe’s final slide at the Charney Report session at BASC. Photos courtesy of Anjuli Bamzai.

October 5, 2021, was such an exciting day to wake up to! The Nobel Prize in Physics was shared by Drs. Syukuro Manabe, Klaus Hasselman, and Giorgio Parisi. The citation reads: “The Nobel Prize in Physics 2021 was awarded for groundbreaking contributions to our understanding of complex physical systems” with one half jointly to Syukuro Manabe and Klaus Hasselmann “for the physical modelling of Earth’s climate, quantifying variability and reliably predicting global warming,” and the other half to Giorgio Parisi “for the discovery of the interplay of disorder and fluctuations in physical systems from atomic to planetary scales.”

As he eloquently stated on the momentous day that he received the Nobel Prize, “I did these experiments out of pure scientific curiosity. I never realized that it would become a problem of such wide-ranging concern for all of human society.”

The accompanying press release on the Nobel Prize particularly cites Suki-san’s work at NOAA in the 1960s, noting that “he led the development of physical models of the Earth’s climate and was the first person to explore the interaction between radiation balance and the vertical transport of air masses. His work laid the foundation for the development of current climate models.”

Left: Event to honor Nobel Laureate Dr. Suki Manabe at National Academy of Sciences. (Left to right) Drs. Jagadish Shukla, Suki Manabe and Marcia McNutt, President National Academy of Sciences. Photo courtesy of Dr. J. Shukla. Right: (Left to right) Drs. V. Ramaswamy, Director, NOAA GFDL, Suki Manabe, and Whit Anderson, Deputy Director, NOAA GFDL, celebrating the big news of Suki-san’s Nobel Prize, October 2021. Photo courtesy of Dr. V. Ramaswamy.

It is no exaggeration to state that the modeling findings by Suki Manabe and, about a decade later, Klaus Hasselman, opened not only an era of climate modeling but also an entirely new subfield of climate science, viz., detection and attribution (D&A) through fingerprinting and other techniques. Observations have provided an important reality check to model simulations through these D&A efforts.

The current torchbearers of the D&A tradition are Drs. Ben Santer, Tim DelSole, Reto Knutti, Francis Zwiers, Xuebin Zhang, Gabi Hegerl, Claudia Tebaldi, Jerry Meehl, Phil Jones, David Karoly, Peter Stott MBE, Tom Knutson, and Michael Wehner, among others. Over the years several of them have also gone on to receive AMS awards—including, in Meehl’s case, the Jule G. Charney Medal. Speaking of awards, Jonathan Gregory is the most recent recipient of AMS’s Syukuro Manabe Climate Research Award, which has also been bestowed on Drs. Joyce Penner and Cecilia Bitz. Next year, consider nominating someone for the Manabe Award, the Charney Medal, or the new Jagadish Shukla Earth System Predictability Prize!

Those of us in the atmospheric and related sciences benefit directly from Suki Manabe’s scientific legacy and intellectual passion, and all of human society owes Suki-san a great debt for helping us to understand climate change, one of the greatest challenges humankind has ever faced.

Anjuli is grateful to Katherine ‘Katie’ Pflaumer for providing useful edits.

Changing Coasts and Culture

Image of wave washing over a rocky beach

AMS 2024 Session Highlight: “Convergence Science in the Context of Integrating Weather and Climate Science with Studies of Marine and Coastal Resources and Geophysical Processes”

By Isabella Herrera, AMS Policy Program

One of the most challenging parts of planning out my week at the AMS Annual Meeting was choosing which symposia and sessions to attend in person, and which to catch on my laptop after leaving Baltimore. Convergence Science: Indigenous Weather, Water and Climate Knowledge Systems, Practices, and Communities was one of the symposia for which I knew I wanted to bein the room where it happens.” In this case, “the room” was in the Baltimore Convention Center, and unlike many scientific and political discussions throughout the history of the United States, these discussions focused on Indigenous voices and the need for the scientific community to more meaningfully engage with Indigenous science and Native peoples. 

The symposium centered on the work of the Rising Voices Center for Indigenous and Earth Sciences (co-administered by NCAR|UCAR and the Livelihoods Knowledge Exchange Network), including the Rising Voices: Changing Coasts (RVCC) research hub. As Lead Investigator Daniel Wildcat said in an opening address for the symposium, RVCC is “catalyzing efforts to bring Indigenous knowledge holders [together] with some of the best university-trained [physical] scientists in the world … to model what convergence science looks like if you include Indigenous wisdom and knowledge.” A short film was played during the morning session to honor the late Dr. Heather Lazrus, Rising Voices co-founder, and her work with Rising Voices. 

A panel discussion during the symposium, Convergence Science in the Context of Integrating Weather and Climate Science with Studies of Marine and Coastal Resources and Geophysical Processes, featured a variety of speakers working at the various intersections of weather, water, climate, marine, and Indigenous science. Here are some of the experiences and perspectives shared during this session.

The Convergence of Science and Identity: Being Native in Scientific Spaces

Robbie Hood, a citizen of the Cherokee Nation and atmospheric scientist, started off the session describing her experience having worked for both NASA and NOAA, and mentioned that although she’d been to many AMS Annual Meetings throughout her career, this was her first time being able to represent herself as a Cherokee. Hood emphasized the immense opportunity of convergence science in practice.

“To me, it’s just science,” said Kekuʻiapōiula (Kuʻi) Keliipuleole, a Native Hawaiian and researcher at the University of Hawaiʻi. Native peoples’ knowledge of and connection to their lands is expansive, and deep, and intimate, Keliipuleole explained to us as she introduced herself by naming her mountain (Makanui), her waters (Wai‘ōma‘o and Pūkele), her rain (Lililehua), and her winds (Lililehua and Wai‘ōma‘o). She spoke about being a Native person who studies native organisms in their environment, in Hawaiʻi for Hawaiʻi, and the complexities of merging her identity of being Native and a scientist – of integrating “western” science into her culture.

Photo of Daniel Wildcat speaking in front of a screen on which is displayed the words, "Rising Voices, Changing Coasts: A new/old approach to convergence science. Speakers: Daniel Wildcat, Paulette Blanchard, Diamond Tachera, Kyle Mandli, Julie Maldonado." Two people are sitting in front of the screen while Dr. Wildcat is standing.
RVCC Lead Investigator Daniel Wildcat giving an opening address during the first session of the Convergence Science symposium, “Rising Voices, Changing Coasts: A New/Old Approach to Convergence Science.” Photo credit: Isabella Herrera.

“From when we are babies, we are learning this method of kilo [a Hawaiian word literally translated as “observations,” but with much deeper meaning in practice] … It’s being able to know the rains and the winds,” she said. “I could tell you that this one tiny section in a road over from my road is constantly flooding … because the government paved a road over an old spring … I see this [particular microbial mat], and I know that comes from groundwater, so I know that that was a spring because I have this kilo, this observational experience.”

Historically, Indigenous scientists have often had to navigate the supposed duality of their identities – of being a scientist and a Native person – and have not been able to include their Indigenous knowledge in their work in the same way they can with the science taught to them through academic institutions. The convergence of western scientific knowledge and Indigenous knowledge is integral to the future of the WWC enterprise.

Suzanne Van Cooten, a citizen of the Chickasaw Nation and Regional Administrator of the USGS South Central Climate Adaptation Center (SC CASC), highlighted the importance of inviting Tribal nations and other groups that have historically been dismissed from climate and water conversations to scientific spaces. She shared her enthusiasm about the first time she was able to forecast for her homelands as a hydrologist.

Respectful Engagement, Not Exploitation

“I think a lot of the Tribes kind of feel like they get talked at more than they get talked with.”

-Daniel Wildcat
Three people sit in front of a screen (their names are listed in the caption below). The screen is displaying the words, "Convergence Science in the Context of Integrating Weather and Climate Science with Studies of Marine and Coastal Resources and Geophysical Processes.
Speakers: Robbie Hood, Suzanne Van Cooten, Ku'i Keliipuleole, Carlos Martinez, Casey Thornbrugh."
(left to right) Speakers Carlos Martinez, Kekuʻiapōiula (Kuʻi) Keliipuleole, and Suzanne Van Cooten during the panel session. Photo credit: Isabella Herrera.

The session also featured discussions of how to go about entering Indigenous spaces from the world of western (or, as Van Cooten prefers to say, colonial) science.

Carlos Martinez, a climate scientist, AAAS Science and Technology Policy Fellow, and program coordinator for the National Science Foundation Coastlines and People Program (CoPe), also serves as a board member of the AMS Board of Representation, Accessibility, Inclusion, and Diversity (BRAID). He talked about his experience working with communities on convergence science.

“One of the things I have learned [is] knowing my place in the room … understanding that what I share is through my lived experiences, and not imposing what other people’s experiences are,” Martinez told us. 

A humble, listening approach is important for effective engagement, yet non-Indigenous groups often fail to employ this approach when entering Indigenous spaces. “I think a lot of the Tribes kind of feel like they get talked at more than they get talked with,” Daniel Wildcat said. “This is systemic.”

“When immersing in a space with convergence science in mind, [one thing I learned is] actively listening; for example … listening to what the communities are interested in learning, what their needs and concerns are, and then if willing, provide resources or information in communication with one another,” Martinez said. “I always take criticism and feedback as a way for growth, as a way that I can be … a better scientist and a better human being.” 

Non-Indigenous scientists should consider their intent versus impact when working with Indigenous communities. Historically, the scientific community has engaged with Indigenous peoples in a way that has been exploitative and continues to perpetuate colonialism, even if the work itself was initially intended to benefit those same communities. 

“If you want to work with Indigenous people, then you’ve got to change how you think about what that work requires,” Wildcat told us. 

Aspects of science and academia can become obstacles to building trusting relationships – something that is deeply important in working with Indigenous people. Most researchers and policymakers aren’t able to spend the time to establish meaningful and authentic relationships with the tribes they may want to work with, and appropriated dollars can’t be spent on food to host community gatherings. 

“[Working with Indigenous people] requires time, it requires meetings where you don’t have an agenda,” Wildcat explained. “You go meet with people, find out what they’re doing, find out what their issues are. . .and then [consider ways you] could assist.”

One of the main challenges Tribes face when it comes to federal funding opportunities, Van Cooten explained, is having the capacity to co-produce applications for funding and then administer the funds. Tribal leaders and program officers are already spread far too thin within their own communities to dedicate any more of their time applying for, let alone managing, large grants. “Yes . . . it’s a huge amount of money, but it will also take a huge amount of management. And so that capacity in the Tribe to manage that, with all the reporting, with everything that’s going to go along with that funding . . . they don’t have that.”

Many of the challenges faced by Tribal Nations are intersectional, and the approaches taken to address them must be, as well. This also rings true for challenges in weather, water, and climate science. Communication is key to both building meaningful relationships and to realizing the full potential of convergence science.

“It’s not much different than trying to put a weather forecaster in the same room with a weather researcher,” Hood told us. “. . .they talk a different language and they’ve got different metrics for what’s important, but if you give them that chance to talk, they’ll work it through. … We just need to open our minds and think about it from both points of view.”

A Change in Culture

These discussions made me consider the profound impacts that this shift in worldview could have on science and society as a whole.

Physical and biological sciences are intrinsically linked, and the need to integrate these two broad disciplines sparked the usage of the term “convergence science” in the first place. Does “western science” continue to limit itself by viewing the Earth and its systems (including biological systems) as entirely separate entities? How is that restriction reinforced by rigid academic and scientific institutions? How can we realize the full potential of convergence science (across various scientific disciplines, and across cultures and communities)?

As Keliipuleole told us, the scientific community “needs more of us to see the world the way that [Native people] see it, and not the way academia raised us to see it.”

There needs to be a culture change. There needs to be capacity building for and within Tribal Nations so that non-Indigenous scientists can engage with Indigenous science, and at universities and Tribal Colleges so students holding this Indigenous knowledge can be a part of the future of the scientific enterprise. There needs to be more of an effort to not just include but to amplify Indigenous voices in spaces like the AMS. The convergence of the western and Indigenous weather, water, and climate sciences must address the ongoing role of colonialism in modern scientific practices, and acknowledge the value of Indigenous science in and of itself.

As Van Cooten said at the start of the discussion:  

“[Science] should be inclusive to all communities, not just primarily those that have the loudest voice.”

Header photo credit: Isabella Herrera.

Recordings of all Convergence Science symposium sessions are available now to registered attendees of the AMS 104th Annual Meeting (log in and find each session through the online program). All recordings will be available to the public beginning three months after the meeting.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024 at the Baltimore Convention Center, the AMS 104th Annual Meeting explored the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions explored the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. Learn more at annual.ametsoc.org.

AMS 2024 Session Highlight: Transition to Carbon-Free Energy Generation

A line of wind turbines

The AMS 2024 Presidential Panel Session “Transition to Carbon-Free Energy Generation” discusses crucial challenges to the Energy Enterprise’s transition to renewables, and the AMS community’s role in solving them. Working in the carbon-free energy sector on research and development including forecasting and resource assessment, grid integration, and weather and climate effects on generation and demand, the session’s organizers know what it’s like to be on the frontlines of climate solutions. We spoke with all four of them–NSF NCAR’s Jared A. Lee, John Zack of MESO, Inc., and Nick P. Bassill and Jeff Freedman of the University at Albany–about what to expect, and how the session ties into the 104th Annual Meeting’s key theme of “Living in a Changing Environment.” Join us for this session Thursday, 1 February at 10:45 a.m. Eastern!

What was the impetus for organizing this session?

Jared: With the theme of the 2024 AMS Annual Meeting being, “Living in a Changing Environment,” it is wonderfully appropriate to have a discussion about our in-progress transition to carbon-free energy generation, as a key component to dramatically reduce the pace of climate change. But instead of merely having this be yet another forum in which we lay out the critical need for the energy transition, we organized this session with these panelists (Debbie Lew, Justin Sharp, Alexander “Sandy” MacDonald, and Aidan Tuohy) to shine a light on some real issues, hurdles, and barriers that must be overcome before we can start adding carbon-free energy generation at the pace that would be needed to meet aggressive clean-energy goals that many governments have by 2040 or 2050. The more that the weather–water–climate community is aware of these complex issues, the more we as a community can collectively focus on developing practical, innovative, and achievable solutions to them, both in science/technology and in policy/regulations. 

Jeff: We are at an inflection point in terms of the growth of renewable energy generation, with hundreds of billions of dollars committed to funding R&D efforts. To move forward towards renewable energy generation goals requires an informed public and providing policy makers with the information and options necessary.

Required fossil fuel and renewable energy production trajectories to meet renewable energy goals. Graphic by Jeff Freedman, using data from USEIA.

Since now both energy generation and demand will be dominated by what the weather and climate are doing, it is important that we take advantage of the talent we have in our community of experts to support these efforts. We are only 16 years out from a popular target date (2040) to reach 100% renewable energy generation. That’s not very far away. Communication and the exchange of ideas regarding problems and potential solutions are key to generating public confidence in our abilities to reach these goals within these timelines without disruption to the grid or economic impacts on people’s wallets.

What are some of the barriers to carbon-free energy that the AMS community is poised to help address?

Jeff and John: From a meteorological and climatological perspective, we have pretty high confidence in establishing what the renewable energy resource is in a given area. .. We have, for the most part, developed very good forecasting tools for predicting generation out to the next day at least. But sub-seasonal (beyond a week) and seasonal forecasting for renewables remains problematic. We know that the existing transmission infrastructure needs to be upgraded, thousands of miles of new transmission needs to be built, siting and commissioning timelines need to be shortened, and we need to coordinate the retirement of fossil fuel generation and its simultaneous replacement with renewables to insure grid stability. This panel will discuss some of the potential solutions we have at hand, and what is/are the best pathway(s) forward. 

On the other hand, meeting the various state and federal targets regarding 100% renewable energy generation also implicates other unresolved issues, such as:  how will we accelerate the necessary mining, manufacturing, and construction and operation by a factor of nearly five in order to achieve these power generation goals? Not to mention how all this is affected by financing, the current patchwork of … regulatory schemes, NIMBY issues, and a constantly changing landscape of policy initiatives (depending on how the political wind is blowing–sorry for the pun!). And of course, there is the question of the “unknown unknowns!”

What will AMS 104th attendees gain from the session?

Nick: Achieving the energy transition is fundamental for the health and success of all societies globally, and indeed, may be one of the defining topics of history books for this time. With that said, the transition to carbon-free energy will not be a straight line, and many factors are important for achieving success. This session should provide an understanding of the current status of our transition, and what obstacles and key questions need to be overcome and answered, respectively, to complete our transition.

Header photo: Wind turbines operating on an oil patch in a wind farm south of Lubbock, Texas. Photo credit: Jeff Freedman.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024, the AMS 104th Annual Meeting will explore the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions will explore the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. The Annual Meeting will be held at the Baltimore Convention Center, with online/hybrid participation options. Learn more at annual.ametsoc.org

Be There: The Kuo-Nan Liou Symposium

Highlighting Key Sessions at AMS 2024

The Kuo-Nan Liou Symposium at the 104th AMS Annual Meeting will celebrate Dr. Kuo-Nan Liou (1943-2021), a giant in the field of atmospheric physics who made crucial contributions in the areas of atmospheric radiation, remote sensing, and the greenhouse impacts of clouds and aerosols. Liou (pictured at right, image courtesy of Penny Jennings), received numerous accolades during his career, including the AMS’s Carl-Gustaf Rossby Research Medal and Charney Award, and he was part of the Intergovernmental Panel on Climate Change team who received the Nobel Peace Price in 2007.

We asked Symposium Co-Chair Ping Yang, University Distinguished Professor and David Bullock Harris Chair in Geosciences at Texas A&M University, about the Symposium and Dr. Liou’s impact. Here are some of his answers:

Dr. Kuo-Nan Liou (image credit: Penny Jennings)

Why are the areas of Dr. Liou’s research so important to understand right now?

As one of the most accomplished atmospheric scientists in the world, Dr. Liou made seminal contributions to atmospheric and climate sciences in many areas, particularly in atmospheric radiation. His radiative transfer model has been widely used in weather and climate models and satellite remote sensing implementations, and thus plays a central role in determining the radiation budget of the earth-atmosphere system and cloud-aerosol-radiation interactions and feedback in a changing world.

Radiative transfer is important because almost all the energy that drives the Earth’s atmosphere and ocean currents originates from the sun. Therefore, the climate of the Earth-atmosphere system is mainly determined by the radiation balance at the top of the atmosphere and the surface since radiation is the only mechanism by which the Earth-atmosphere system gains or loses energy.

What can attendees expect from the Symposium?

This symposium honors the legacy of Dr. Kuo-Nan Liou by bringing together researchers to share knowledge, foster collaborations and address current challenges in the fields where Dr. Kuo-Nan Liou left a lasting impact. Attendees, both in-person and virtual, can benefit from gaining insights into the latest research and advancements in these areas. Session topics include “Interactions Among Climate, Radiation, Clouds, Aerosols, and Surface”, “Radiative Transfer Theory & Spectroscopy,” “Remote Sensing of Clouds, Aerosols, and Surface Properties,” and “Light Scattering and Applications.” The Symposium will provide a platform for networking and engaging with experts and a forum for disseminating cutting-edge research findings.

The Symposium will delve into the forefront issues within these research areas. Noteworthy presentation topics include the lidar remote sensing of snow depth and density, sub-millimeter-wave remote sensing of ice clouds, Tibetan Plateau snowpack loss and its connection to extreme events, and more.

The first session aligns with the central focus of the 2024 AMS Annual Meeting, “Living in a Changing Environment.” It features invited speakers Drs. Ruby Leung, Dennis Hartmann, V. Ramaswamy, Zhanqing Li, Jonathan Jiang, and Yongkang Xue. 

How did Dr. Liou influence the fields of atmospheric and climate science?

Dr. Liou’s work left a profound mark on the atmospheric and climate sciences due to his seminal contributions to radiative transfer, atmospheric optics, cloud-aerosol-radiation-climate interactions, and remote sensing. He was a pioneering researcher who demonstrated that atmospheric radiation should no longer be consigned to the fringes of meteorology, but instead should take a central place in the new world of climate science.

His book, “An Introduction to Atmospheric Radiation,” now in its second edition (with the first edition published in 1980), has been an invaluable resource for students and researchers around the world studying atmospheric radiation and its applications in climate science and remote sensing. Accepting the Rossby Medal in 2018, Prof. Liou talked about how his own early-career exposure to books like Chandrasekhar’s “Radiative Transfer” and Born & Wolf’s “Principles of Optics” spurred his innovations. For example, his simplified solutions for understanding solar and heat energy transfer problems, and his application of geometric optics to understand the scattering, absorption, and polarization properties of soot aerosols and irregular ice crystals.

He also humbly thanked his graduate students at the University of Utah and UCLA, saying, “They deserve to share, in equal measure, any recognition I have received, including this great honor from AMS.” We, the organizers of the Symposium, in turn are grateful to Dr. Liou. Along with his exceptional impact on the atmospheric sciences, he was a true role model as a leader and educator.

Kuo-Nan Liou receiving the Carl-Gustaf Rossby Research Medal at the 2018 AMS Annual Meeting and celebrating with his family, students, and colleagues. Photos provided by Liou Symposium co-chairs.

The Kuo-Nan Liou Symposium will be held Tuesday, 30 January, 2024 at the AMS 104th Annual Meeting, in Baltimore and online; it will feature invited presentations and a poster session, along with a special luncheon. Learn more about the Symposium and view the program.

A Few Takeaways from the “State of the Climate in 2022”

Map of significant global weather and climate anomalies and events of 2022.

Record-high greenhouse gases, sea levels, monsoons, and droughts—and a volcanic vapor injection

By Michael Alexander, Lead, Atmosphere Ocean Processes and Predictability (AOPP) Division, NOAA, and BAMS Special Editor for Climate

The annual NOAA/AMS State of the Climate report has just been released, with a comprehensive global look at the climate in 2022. Produced by the NOAA National Centers for Environmental Information (NCEI) and the American Meteorological Society, the State of the Climate Report maps out the complex, interconnected climate phenomena affecting all parts of the globe. It also charts global progress in observing and understanding our climate system. 570 scientists from 60 countries contributed to this year’s report, including a rigorous peer review, making it a truly global endeavor. 

As the senior editor on this project, I wanted to share with you a few highlights. Click here to read the full report, published as a supplement to the Bulletin of the American Meteorological Society.

New record-highs for atmospheric greenhouse gases CO2, methane, and nitrous oxide.

It was yet another record-setting year for atmospheric carbon dioxide and other greenhouse gases. 2022 saw an average concentration of 417.1 ± 0.1 ppm for atmospheric CO2; methane and nitrous oxide also reached record highs. 

Graphs of yearly global surface temperature compared to the 1991-2020 average for each year from 1900 to 2022, from 6 data records, overlaid on a GOES-16 satellite image from September 22, 2022.  Image credit: NOAA Climate.gov.

Warmest La Niña year on record.

Despite being in the typically cooler La Niña phase of ENSO, 2022 was among the six warmest years on record, and was the warmest La Niña year ever recorded. Summer heat waves left annual temperatures at near-record highs in Europe, China, the Arctic, and Antarctica (parts of Europe set daily or seasonal heat records), and New Zealand experienced its warmest year ever. High-pressure “heat domes” helped elevate local temperatures in many areas, including parts of North America and Europe. 

Record-high global mean sea level and ocean heat.

Global mean sea level reached 101.2mm above 1993 levels, setting a new record for the 11th year in a row. 2022 also saw record-high global ocean heat content (as measured to 2000 meters below the surface), although La Niña moderated sea-surface temperatures.

Image credit: NOAA

Complex climate picture.

Global warming trends continued apace, but of course numerous large-scale climate patterns complicated the picture. In 2022 we saw the first “triple-dip” La Niña event (third consecutive La Niña year) of the 21st century. The Indian Ocean Dipole had one of its strongest negative events since 1982, which led to increased temperatures and precipitation in the eastern Indian Ocean. Along with La Niña, this contributed to record-breaking monsoon rains in Pakistan that caused massive flooding and one of the world’s costliest natural disasters. We also had a positive-phase winter and summer North Atlantic Oscillation affecting weather in parts of the Northern Hemisphere. 

A bad year for drought.

For the first time ever, in August 2022, 6.2% of the global land surface experienced extreme drought in the same month, and 29% of global land experienced at least moderate drought. Record-breaking droughts continued in equatorial East Africa and central Chile. Meanwhile, parts of Europe experienced one of their worst droughts in history, and China’s Yangtze River reached record-low levels.

Warmth and high precipitation at the poles.

2022 was the firth-warmest year recorded for the Arctic, and precipitation was at its third-highest level since 1950. The trend toward loss of multi-year sea ice continued. Meanwhile, Antarctic weather stations recorded their second-warmest year ever, including a heatwave event that collapsed the Conger Ice Shelf, and two new all-time record lows in sea-ice extent and area set in February. On the other hand, record snow/icefall due to atmospheric rivers led to the continent’s highest recorded snow/ice accumulation since 1993.

Image credit: NOAA

Notable storms: Ian and Fiona.

85 named tropical cyclones were observed across all ocean basins, an approximately average number. Although there were only three Category 5 storms, and the lowest recorded global accumulated cyclone energy, the year produced Hurricane Ian, the third-costliest disaster in U.S. history, as well as Hurricane Fiona, Atlantic Canada’s most destructive cyclone.

Massive volcanic injection of atmospheric water vapor.

The Hunga Tonga-Hunga Ha’apai submarine volcano in the South Pacific injected a water plume into the atmosphere of unprecedented magnitude (146+/-5 Terragrams, about 10% of the stratosphere’s total water) and height (reaching into the mesosphere). We don’t yet know what, if any, long-term effects this will have on the global climate, although the increase in water vapor has interfered with some earth system observations. 

The full report is a comprehensive and fascinating analysis of our climate system in the previous calendar year. I urge you to read it and communicate your own takeaways from the State of the Climate in 2022. You can read the press release here.

Infographic at top: World map showing locations of significant climate anomalies and events in 2022. Credit: NOAA.