A Scientific Neighborhood

At some point, very early in our meteorological education, we learn that the atmosphere, the oceans—and thus weather and climate everywhere—are inextricably linked across the globe. Your weather is my weather, no matter where you live and where I live.
Weather makes us all neighbors—partners in science across vast distances. The idea is indelibly etched in our science. It was alive as early as Benjamin Franklin, writing to his brother hundreds of miles away to ask if the weather in Boston bore any relation to the weather in Philadelphia. It pervades the insights of Edward Lorenz, who taught that the flap of a butterfly’s wings in Brazil might be the trigger for a tornado in Texas.
The neighbor principle of weather drives discovery and propels the dramatic improvement in forecasting and understanding we continue to witness. We see this ethos in the free exchange of data and sharing of resources to build our Global Observing System. We see it when Europeans and Japanese move their satellites to help us cover gaps in our observing, and when Americans do the same for them. In science and saving lives, we are neighbors, across thousands of miles of ocean.
The good neighbor spirit was alive and well at an AMS Annual Meeting Town Hall on U.S.-International Partnerships this month. The panel featured representatives from AMS, the World Meteorological Organization, and the meteorological societies of China, Japan, South Korea—people who traveled half a world from their families to be with us. They came together to tout the value of close international collaborations. At the Town Hall, it was clear why scientists seek opportunities to confer with each other, across borders. “We need to learn from each other,” the panelists agreed.
Last week the AMS joined 170 other professional, academic, and scientific organizations in signing a letter to President Trump. The letter warned that the Executive Order issued on January 27 regarding visas and immigration has “profound implications for diplomatic, humanitarian, and national security interests, in part because of the negative impact on U.S. science and engineering capacity.”
The letter points out that

In order to remain the world leader in advancing scientific knowledge and innovations, the U.S. science and technology enterprise must continue to capitalize on the international and multi-cultural environment within which it operates.

AMS has been doing more and more to recognize the reality of that international and multi-cultural environment in our disciplines. This reality has a long history. Franklin’s ideas on lightning were quickly celebrated in Europe, for example. And the founder of modern weather services in our country, Cleveland Abbe, encouraged translations of seminal European papers in the pages of Monthly Weather Review, a journal he founded in 1872 to make domestic meteorologists aware of relevant scientific innovations. Throughout the early 20th century revolution of scientific weather forecasting, major advances came through exchanges of scientists traveling to Europe, and from Europeans scientists who came to the United States. Nearly every American in the AMS can trace their personal scientific “lineage” to trans-Atlantic and trans-Pacific exchanges of this kind.
Today, AMS continues this neighborliness of science—through cooperative agreements with societies in Canada, China, Europe, and India and elsewhere, through the programming of its meetings, and through the pages of its widely read journals. Take the latest Annual Meeting: more than 500 attendees came from outside the United States. Look at the latest issue of AMS’s Journal of Climate: fully half of the 50 authors listed there are affiliated with institutions of other countries. A large number of the other half were educated, at least in part, in overseas institutions. Scientific talent, innovative ideas, professional heritage—all flow across the globe as necessarily as wind and water.
This international environment is the scientific neighborhood in which we live. It is one critical reason that AMS and its cosigners offered the President their assistance in “crafting an immigration and visa policy that ensures strong borders while staying true to foundational American principles as a nation of immigrants.”

Observing #AMS2017 through the Lens of Twitter

The twitterverse was abuzz with activity during last week’s Annual Meeting. Here are a few of the highlights:

Yes, We've Got Maps

This point was made at Monday’s Presidential Forum, where Dr. Richard Jackson of UCLA was talking about how much our scientific community offers to the world of public health, and how we might best be able to move decision makers to action based on climatic information.
It is good news. Nobody makes maps more eagerly than meteorologists.
Hardly a session goes by at the AMS Annual Meeting without some sort of map—often of some unexpected variable. For example, today at 10:45 a.m. (Skagit 4), Yonghua Wu (City Univ. of New York) and colleagues pull together trajectory modeling, lidar ceilometer, and satellite observations to map air quality variations due to the interaction of boundary layer conditions with wildfire smoke plumes this past summer over New York City.
blog_logo_final_all_caps_updateThen on Thursday (1:45 PM, Tahoma 2), you can map the New York City area again, in a completely new way: Sina Kashuk of NOAA shows spatial density maps of the 5 million flood-related phone calls across the five boroughs.
Using the top 25 most frequent complaint types ranging from noise to rats, the overall propensity of calling was estimated and mapped. This map was then used to normalize the flood-related complaints. The temporal-spatial analysis was highly correlated with monthly rainfall intensities.
Clearly, no place is mapped in one particular way. Maps say as much about the data and the analysis as about the specific location. Mapping is thus an essential tool for coalescing, analyzing, contemplating, and communicating observations.
Harvard historian Peter Galison takes this point a step further in his studies of the history of observing as evinced by map-making. Through a selection of atlases across the centuries, all made by scientists, he shows how the powers of observation and the expectations and capabilities of science are all intertwined, and all evolving. The idea of observing itself is not the same today, he shows, as it was in Newton’s time or even in Einstein’s. In this lecture from 2011 he uses the atlases to trace the history of objectivity itself in mapping:

Which brings us warily to the title of a presentation this morning (8:30 AM, Room 611) , “Beyond Maps-How Cloud Computing Enables the Future of Geospatial Analysis Services.” Presenter Steve Kopp of ESRI explains:

[W]e now see a technology transformation that is enabling deeper understanding, and will lead to new insights and new discoveries. Early adoption of geospatial cloud computing focused on organizing and sharing data….Map services (a picture of the data) are symbolized data ready to view, and require fewer specialized skills than working with raw data such as GRIB files. More recently organizations have begun providing weather and climate data services. These are feature services like WFS and image services like WCS. Data services allow customization of the symbology and more flexibility in visually combining with other data, but also can be used for analysis allowing the user to ask new questions with the data. The transition to data services feeding into analysis services will have a profound impact on the utility and growth of geospatial cloud computing.

Perhaps someday historians will see this AMS Annual Meeting as a part of shift that led the way to yet another stage in the growth of science itself.

A Day of Fun Observations at WeatherFest

There were plenty of entertaining and educational observations made by weather enthusiasts of all ages at WeatherFest on Sunday. Close to 2,00o people visited the Convention Center for an afternoon of weather experiments, exhibits, and festivity. There was even a special appearance by Owllie Skywarn!
Check out a few of the highlights here:

The Paths to Observing Are Paved with Innovation

Every journey begins somewhere—sometimes all you need to do is start heading down a path.
blog_logo_final_all_caps_updateThis year AMS Past-President Fed Carr has given our Annual Meeting a destination: a comprehensive consideration of our observing needs. He’s also given us a place to embark on our journey: the Presidential Forum this morning (9 AM, Ballroom 6ABC) in which moderator Vanda Grubišić and her distinguished panel take us on a guided tour of our community’s capabilities and a glimpse of the multidisciplinary realms just beyond our reach.
He’s given us everything but the actual path. That choice is yours.
One option that beckons right from the Forum is the path of innovative platforms and systems that continually expand the ways we observe. It’s a path that travels across land, through air and water. It requires vehicles of all kinds and sizes, and takes your quest through every byway of modeling, theory, services, products, and yes, even observations, in search of our observational needs for the future .
Let’s look at a few of the milestones along the path of alternative observing, if you choose to take it.
Roadways themselves are paths, of course, and the Annual Meeting will showcase the new ways roads are a vital part of observing. On Tuesday (9:15 AM), Jeremy Paul Duensing of Schneider Electric will examine the success of Alberta Transportation’s road weather sensor network. One of the largest intelligent road observing systems in North America, this network features sensors taking 100 readings per second directly on vehicles.
Also on Tuesday, at 9:30 AM, Amanda Anderson of NCAR will review the Wyoming Department of Transportation’s project to collect weather (and other) data from internet-connected vehicles traveling on the state’s portion of I-80, which is prone to all sorts of hazardous conditions from blizzards to wildfires.
Meanwhile, the Oklahoma DOT combines a roadside weather information system with modeling and GIS visualization software to monitor road icing hazards. Benjamin Toms of the University of Oklahoma will discuss this system on Tuesday at 11:15 AM.
Our emerging technologies pathway extends skyward, too. On Wednesday at 9:45 AM, learn more from Djamal Khelif of the University of California, Irvine, about the Controlled Towed Vehicle (CTV), which utilizes improved towed-drone technology to measure spatial and temporal variability of sea surface temperatures, wind, temperature, and humidity, as well as turbulent air-sea fluxes from observations made as low as eight meters.
Range into space as well—you no longer need big, complicated satellites to get there. On Wednesday at 8:45 AM, as William Blackwell of MIT Lincoln Laboratory explores the capabilities of CubeSats in microwave high-resolution atmospheric remote sensing. James Clemmons of The Aerospace Corporation will investigate the potential uses of CubeSats in space weather research on Monday at 4:30 PM .
The path even extends onto and into the water. On Monday at 4 PM, Maricarmen Guerra Paris of the University of Washington will review a project that utilizes ferries equipped with Acoustic Doppler Current Profilers to provide full-depth profiles of currents and distinguish tidal currents adjacent to Puget Sound.
The Annual Meeting is full of such unconventional paths—paths of invention paving the way to observation. It’s time to make the choice and your journey.

We Want Your Thoughts on Observational Needs

by Fred Carr, AMS Past President
Dear Paper and Poster Presenters at the AMS Annual Meeting,
As you know, the theme of the 2017 AMS Annual Meeting is “Observations Lead the Way.” Even though there are several conferences, symposia and sessions dedicated to identifying the greatest observational needs in many disciplines within the weather, water and climate community, we want the advice of all presenters in the 42 conferences and symposia comprising this year’s Annual Meeting.
blog_logo_final_all_caps_updateThe intent is to obtain a community consensus on what observations we need to advance our research, applications, products and services. This information, hopefully from you and the 2000 other presenters at this meeting, will be organized and summarized

  • to write an article for the Bulletin of the American Meteorological Society on our community’s consensus on the greatest observational needs across the weather, water, and climate enterprise;
  • to create a document using the same data that would be presented to Federal and State agencies that support environmental measurements, platforms, and networks; and
  • to create a similar document tailored for policy makers, especially for Congress and their staff, to give them the community consensus they are often looking for.

To help us in this effort, we are asking you to create one slide or set of bullets near the end of your talk or poster that includes

  • observations (or networks) that are needed to benefit your future research, application or product development;
  • recommended instruments that are needed to make these observations;
  • your view on the greatest observational needs for your discipline in general.

If you have co-authors, please seek their opinions on these questions as well. We have signed up 100 student volunteers who will attend your sessions and help “harvest” and organize all of your recommendations in a form we can use for the aforementioned publications. I also encourage all poster presenters to upload an image of their poster to the Presenter’s Corner.
I hope you decide to assist us in this very important effort to improve our nation’s observing capacity. Thank you!
Fred Carr
President, American Meteorological Society

The Future Starts Now with Student Conference

The Annual Meeting kicked off this weekend with one of our biggest Student Conferences ever, as more than 700 students were in attendance. It was a lively, entertaining, and educational event for everyone who participated, as can be seen in these observations taken at the Conference:

Good Enough for Ethics

At his blog, Living on the Real World, AMS Associate Executive Director William Hooke makes a compelling prediction for the next four years: Ethics will matter more than ever.
He’s not talking about politicians, necessarily. He’s talking about our ethics, as members of the atmospheric sciences community. His reasoning? Our capabilities in making predictions are getting that good:

In this high-stakes environment where the products and services we provide are the basis for action, ethics matter. When can and should a NWS field forecaster begin to act when numerical guidance appears to diverge from on-the-ground reality? What observations, products and services should be considered public goods? What can and should be privatized? What’s at stake with warn-on-forecast? To list these few examples doesn’t do justice to the dozens of ethical dimensions to the daily work of everyone in every corner of today’s Earth observations, science, and services community.

At the AMS Annual Meeting on Sunday, Tom Ackerman (meteorologist/climatologist) and Steve Gardiner (philosopher/ethicist) of the University of Washington will moderate a panel session on ethics (1:30 to 3:30 p.m.; Room 613).
Gardiner is the author of the book, A Perfect Moral Storm: The Ethical Tragedy of Climate Change, in which he describes the way this environmental hazard combines many of the classic types of ethical dilemmas found separately in other threats to civil society. The challenges include incomplete knowledge and the uneven distribution of exposures to risk, incentives for action, and burdens of cost—across geography as well as economic classes and generations.
To get a taste of the discussions this week, try this lecture in which Gardiner shows how 200 years ago Jane Austen anticipated the perfect storm of ethical challenges of climate change.

Then follow up Sunday’s sessions by attending “Shades of Gray: Panel Discussion on Ethics, Law, and Uncertainty in the Weather, Water, and Climate Community,” on Wednesday (8:30 a.m., Room 613):

Though our Enterprise is indeed motivated by altruistic interests, ethical gray zones emerge. How confident are we in that climate model, and what should we disclose? Should we attempt to create a forecast beyond 7-14 days? What is the proper balance between providing information and urging action? The presentation of scientific uncertainty can be fraught with misinterpretation and resistance, particularly from non-scientists.


For Climate Science, Transitions Continue

The Inauguration of Donald Trump yesterday marked the end of the Transition. Yet, the end of the Transition with a big “T” marks the beginning of small “t” transitions for everyone else—political winners and losers alike.
According to Reed College historian Joshua Howe, climate science is particularly affected by such changes, absorbing and adapting to shifts in political winds for many decades. The continually transitioning relationship climate science has forged with politics—especially environmental politics—is chronicled in Howe’s book, Behind the Curve: Science and the Politics of Global Warming (Univ. of Washington Press, 2014).
As a past recipient of the AMS Graduate Fellowship in the History of Science, Howe presented the basics of his book at the 2009 AMS Annual Meeting. His dissertation was expanded into the book. In a recent interview at New Books Network (listen here), Howe explains how climate scientists have had to reinvent their approach to environmental advocacy. In Howe’s view, the approach politically active scientists took to triggering action on climate change simply didn’t work well, making the field ripe for further transition.
It was clear early on that climate change, as an environmental concern, was unprecedented in scale and complexity. Following on the debate in the 1970s over the nation’s Supersonic Transport program, atmospheric science had won a place at the environmental table. But environmentalists were used to dealing with local pollution and wilderness access—clear quality of life issues that resonated with their middle class constituency, Howe says. They were interested in concrete, simple, nontechnical issues they could rally around—and climate change was too complex to fit those parameters. Climate change wasn’t a low-hanging fruit ripe for political victories.
Meanwhile, the issue of nuclear winter provided a further, politically loaded impetus to the climate community, Howe said. But the result was a split, with some scientists becoming more politically outspoken within the environmental movement, while others became more entrenched within a conservative physical science community. As a result, the relationship of government funding to climate science became politically fraught.
Scientists initially reached out on climate change through the government agencies in the 1970s. Howe points out that “working within government bureaucracies left scientists vulnerable to political change.” The Carter administration shifted directions; Reagan then arrived with budget cuts and curtailed access to bureaucracy.
In response, many climate scientists sought a technical consensus that might force political action by the shear power of knowledge. The scientists attacking the problem in the 1970s onward had, as Howe puts it, a “naïve” attitude.
“Better knowledge, climate scientists believed, would lead to better policy,” Howe said in his 2009 AMS presentation. “Perhaps it is time for scientists to drop the false veil of political neutrality and begin discussing science and politics as two sides of the same coin.”
The AMS Annual Meeting in Seattle is an ideal opportunity to ponder the future of the atmospheric sciences during the next four years. Check out the Monday Town Hall on “Climate Change – How can we make this a national priority?” (12:15 p.m., Room 613). Then attend the panel session on priorities of the Trump Administration and Congress later that day (4 p.m., same room). The panelists include Ray Ban, Fern Gibbons, and Barry Lee Myers.

Thanks for Sharing

by Jeff Rosenfeld, Editor in Chief, BAMS
One of the great challenges of parenthood is teaching kids how to share. All too often the stigmatizing message spreads amongst parents at your toddler’s preschool: your little Izzie isn’t “sharing” with the other kids. Sharing is a difficult skill to teach at any age.
The problem is, of course, that we’re telling our children to share the things that matter most to them—sacred items like a toy car, a teddy bear, or a cupcake. To a two-year-old, the most innocuous possessions are precious and are not negotiable. Nor are adults setting an example by sharing precious possessions: we’re not sharing our home with our coworkers or handing the keys of our car to complete strangers. We don’t invite the people at the table next to us in the restaurant to sample our dessert.
Ultimately, some things we simply never learn to share. But you wouldn’t know it from looking over the program to our upcoming AMS Annual Meeting. Clearly, in atmospheric, oceanic, and hydrologic sciences you will find people who have learned to share. It’s a key characteristic of our community that we ought to share more with the rest of the world (for more on this, seek William Hooke’s book, Living on the Real World: How Thinking and Acting Like Meteorologists Will Help Save the Planet).
People in this community have no choice about sharing, actually. It’s the subject matter, above all. Water and air on this planet must be shared. We can’t live without sharing them. We certainly can’t study them without sharing, either.
Now, actually, science in general is good at sharing. Research can’t get anywhere if ideas and information aren’t shared. The shear number of people presenting at our meeting, however, is a very high percentage of our overall membership. Sharing is integral to science, and in particular to weather, water, and climate science.
Some presentations deal head-on with improving scientific sharing. For example, on Wednesday (Jan. 25, 8:45 a.m.), Kyle Tyle of SUNY is discussing the Big Weather Web initiative of NSF. The idea is to improve data management and access and minimize the work of creating visualizations. In the process Big Weather Web addresses the problem of reproducibility that bedevils a world in which everyone is creating tools and storage on their own.
Later the same day, at 5 p.m., Cecelia Deluca (CIRES, Univ. of Colorado) will talk about how the Earth System Prediction Suite initiative helps the major U.S. modeling centers strengthen their common efforts in subseasonal to seasonal scale prediction. “ESPS and its underlying standards begin to transform the S2S modeling community from one in which multiple modeling centers strive to understand each other’s efforts, to one in which each agency can leverage resources across the nation.” A lot of this, of course, is the sharing of codes and modules.
There are countless other examples of how scientists share techniques and data. Sharing gets more difficult—and the material benefits more elusive—when we talk about sharing at a personal level. The rewards are deep, however. This type of sharing is also fundamental to science. It governs how mentors, teachers, and leaders must interact with colleagues and students.
Melissa Burt and colleagues from Colorado State University published an illuminating article in BAMS in July about how sharing is the essence of solving a central dilemma of our science—how do we attract and keep talent from underrepresented groups in our field? Offering mentorships and field research opportunities are among the keys, but the bottom line in all of those recipes for recruitment and retention is the idea of sharing. Advisors, mentors, and colleagues need to show students that they will share their experiences and opportunities at every step in a student’s education.
At the root of effective sharing is the willingness to build and keep trust. Students ultimately will trust the atmospheric sciences with their futures if they realize the atmospheric sciences will entrust them with the responsibility to carry our work forward.
The trust-building example of the Earth Science Women’s Network (also featured in BAMS) has earned them the 2017 AMS Special Award at this upcoming Annual Meeting. It is inscribed “for inspirational commitment to broadening the participation of women in the Earth sciences, providing a supportive environment for peer mentoring and professional development.”
On this Martin Luther King Day, there’s a lesson in that for all of us—a lesson in supporting diversity through building trust and sharing. Science already models its relationship of trust, and not just by sharing data and tools with each other. Science models this relationship by asking for a measure of trust from the world. The fate of many, many species is, to a large degree, in the hands of those who seek understanding of climate, weather, and water. Surely a science entrusted with the global future can learn to hand over the keys to its intellectual future to eager, talented young people of all backgrounds.
(This post is adapted from the “Letter from the Editor” in the July 2016 issue of the Bulletin of the American Meteorological Society.)