AMS 2024 Session Highlight: Transition to Carbon-Free Energy Generation

A line of wind turbines

The AMS 2024 Presidential Panel Session “Transition to Carbon-Free Energy Generation” discusses crucial challenges to the Energy Enterprise’s transition to renewables, and the AMS community’s role in solving them. Working in the carbon-free energy sector on research and development including forecasting and resource assessment, grid integration, and weather and climate effects on generation and demand, the session’s organizers know what it’s like to be on the frontlines of climate solutions. We spoke with all four of them–NSF NCAR’s Jared A. Lee, John Zack of MESO, Inc., and Nick P. Bassill and Jeff Freedman of the University at Albany–about what to expect, and how the session ties into the 104th Annual Meeting’s key theme of “Living in a Changing Environment.” Join us for this session Thursday, 1 February at 10:45 a.m. Eastern!

What was the impetus for organizing this session?

Jared: With the theme of the 2024 AMS Annual Meeting being, “Living in a Changing Environment,” it is wonderfully appropriate to have a discussion about our in-progress transition to carbon-free energy generation, as a key component to dramatically reduce the pace of climate change. But instead of merely having this be yet another forum in which we lay out the critical need for the energy transition, we organized this session with these panelists (Debbie Lew, Justin Sharp, Alexander “Sandy” MacDonald, and Aidan Tuohy) to shine a light on some real issues, hurdles, and barriers that must be overcome before we can start adding carbon-free energy generation at the pace that would be needed to meet aggressive clean-energy goals that many governments have by 2040 or 2050. The more that the weather–water–climate community is aware of these complex issues, the more we as a community can collectively focus on developing practical, innovative, and achievable solutions to them, both in science/technology and in policy/regulations. 

Jeff: We are at an inflection point in terms of the growth of renewable energy generation, with hundreds of billions of dollars committed to funding R&D efforts. To move forward towards renewable energy generation goals requires an informed public and providing policy makers with the information and options necessary.

Required fossil fuel and renewable energy production trajectories to meet renewable energy goals. Graphic by Jeff Freedman, using data from USEIA.

Since now both energy generation and demand will be dominated by what the weather and climate are doing, it is important that we take advantage of the talent we have in our community of experts to support these efforts. We are only 16 years out from a popular target date (2040) to reach 100% renewable energy generation. That’s not very far away. Communication and the exchange of ideas regarding problems and potential solutions are key to generating public confidence in our abilities to reach these goals within these timelines without disruption to the grid or economic impacts on people’s wallets.

What are some of the barriers to carbon-free energy that the AMS community is poised to help address?

Jeff and John: From a meteorological and climatological perspective, we have pretty high confidence in establishing what the renewable energy resource is in a given area. .. We have, for the most part, developed very good forecasting tools for predicting generation out to the next day at least. But sub-seasonal (beyond a week) and seasonal forecasting for renewables remains problematic. We know that the existing transmission infrastructure needs to be upgraded, thousands of miles of new transmission needs to be built, siting and commissioning timelines need to be shortened, and we need to coordinate the retirement of fossil fuel generation and its simultaneous replacement with renewables to insure grid stability. This panel will discuss some of the potential solutions we have at hand, and what is/are the best pathway(s) forward. 

On the other hand, meeting the various state and federal targets regarding 100% renewable energy generation also implicates other unresolved issues, such as:  how will we accelerate the necessary mining, manufacturing, and construction and operation by a factor of nearly five in order to achieve these power generation goals? Not to mention how all this is affected by financing, the current patchwork of … regulatory schemes, NIMBY issues, and a constantly changing landscape of policy initiatives (depending on how the political wind is blowing–sorry for the pun!). And of course, there is the question of the “unknown unknowns!”

What will AMS 104th attendees gain from the session?

Nick: Achieving the energy transition is fundamental for the health and success of all societies globally, and indeed, may be one of the defining topics of history books for this time. With that said, the transition to carbon-free energy will not be a straight line, and many factors are important for achieving success. This session should provide an understanding of the current status of our transition, and what obstacles and key questions need to be overcome and answered, respectively, to complete our transition.

Header photo: Wind turbines operating on an oil patch in a wind farm south of Lubbock, Texas. Photo credit: Jeff Freedman.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024, the AMS 104th Annual Meeting will explore the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions will explore the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. The Annual Meeting will be held at the Baltimore Convention Center, with online/hybrid participation options. Learn more at annual.ametsoc.org

Be There: The AMS Student Conference

Photo of Melissa Piper, Angelie Nieves-Jimenez, and Dillon Blount seated next to each other.

The 23rd Annual AMS Student Conference, which takes place 27–28 January (immediately prior to the AMS 104th Annual Meeting in Baltimore), spotlights research by graduate and undergraduate students in the atmospheric and allied sciences, as well as offering networking and other career opportunities, presentations from leaders in the field, and the chance to hone important skills. We spoke with Conference Co-Chairs (pictured above, left to right) Melissa Piper of SUNY Albany, Angelie Nieves Jiménez of Colorado State University, and Dillon Blount of the University of Wisconsin-Milwaukee about what students will gain from the conference experience.

What’s behind this year’s Student Conference theme?

Melissa: This year’s Student Conference theme is “It’s Our Turn: Tackling Our Changing Environment.” We wanted to adapt the Annual Meeting theme (“Living in a Changing Environment”) to align with the rapid, multi-faceted changes students in the atmospheric sciences currently face. As students, our personal environments are constantly changing: we are going to school, moving for internships, and facing the unknowns of post-student life. On the flipside, our generation is entering adulthood in the face of a climate crisis. As we enter the workforce, we will be faced with developing solutions, conducting research, and adapting with our local communities to climate change. We hope that this year’s Student Conference can help prepare students to tackle these complex changes in all aspects of our lives.

What’s distinctive about the AMS 2024 Student Conference, and who should attend?

Melissa: The Student Conference is planned solely for students, by students from a variety of universities, backgrounds, and interests—so the conference is relevant to current students in the atmospheric sciences. There are professional development and networking sessions alongside research presentations constructed with students in mind (so no presentations that require you to have a PhD to understand!). Even better, the Student Conference Poster Session provides all students the opportunity to present their research at a reduced cost compared to the AMS Annual Meeting. A separate conference [also] gives students an opportunity to meet their peers from all around the world. This is especially important because we will all be each other’s colleagues in a few years!

While most tend to think of the Student Conference as being tailored to undergraduate students, we are making conscious strides in ensuring our conference is relevant to graduate students as well. We have sessions geared towards professional development, discovering lesser-known sub-fields in the atmospheric sciences, networking, jumping out of academia, and more!

Angelie: Additionally, the Career Fair on Saturday and Sunday nights is focused primarily providing students with information about internships and graduate school opportunities! We partner up with the Board of Early Career Professionals to bring professional development sessions for all stages.

The Student Conference takes place prior to the bigger AMS Annual Meeting, which can help students loosen up and prepare for the rest of the week and know what to expect. It also can serve as a trial of whether they wish to pursue the atmospheric sciences further.

Dillon: A conference geared towards students is a great way to get the students involved in the overall community of the American Meteorological Society. As students, we can often feel overwhelmed by the larger Annual Meeting and how to build a network throughout the week. This conference provides a great toolbox to use throughout the week to network and build community. This inclusion of students, and the resources gained at the Student Conference, allows students to help shape the future of the AMS.

What events at the conference are you most excited about?

Angelie: I am excited about the new Community Based Science Session which is inspired by what was previously known as the BRAID (Board on Representation, Accessibility, Inclusion, and Diversity) Session. This year we are focusing on presenting and highlighting the actions taken behind some of the amazing community initiatives.

Dillon: I am most excited about the Sunday keynote speakers! It is not often that students get the opportunity to hear from the top two leaders of the National Weather Service. Ken Graham and Michelle Mainelli’s leadership provides a great insight into what the future of that career field looks like. They are wonderful people, and I cannot wait to hear what they have to share!

Melissa: One of my favorite parts of the Student Conference is the Conversations with Professionals session. This year, we have an incredible lineup of 10 professionals from the private, public, and policy sectors for our students to have informal conversations with—including meteorologist-in-charge of the National Weather Service in Baltimore Mr. James Lee, director of the AMS Policy Program Dr. Paul Higgins, and broadcast meteorologist for WBAL-TV in Baltimore Ms. Ava Marie. It’s a fantastic networking experience!

In Short: Why Attend the AMS 2024 Student Conference?

AngelieDillonMelissa
“The 2023 AMS Student Conference provides a space for students to expand their network, advertise their work and build their confidence as they gain experience in the workforce.”“The student conference provides students the opportunity to explore different careers and opportunities after school whether this includes graduate school or a job. There is a vast amount of experience and advice provided at this conference, from a variety of perspectives from early to late career professionals.”“The Student Conference goes beyond research presentations and the exploration of different careers → it gives you the opportunity to build your toolbox on skills like networking, having a healthy mindset, and technical skills.”

About the AMS Student Conference

The 23rd Annual AMS Student Conference will take place 27-28 January 2024, the weekend leading into the main AMS 104th Annual Meeting in Baltimore. The Student Conference provides opportunities for undergraduate and graduate students to broaden their horizons, cultivate new skills, hear from leaders in the weather, water, and climate enterprise, and network with fellow students and professionals. Attendees also have the opportunity to participate in workshops to help with their professional development, attend the Graduate School and Career Fair to help with planning the next step in their career, and gain valuable experience by presenting their work at the Student Conference Poster Session. Students can attend the conference in person in Baltimore as well as virtually. Learn more and view the program.

Be There: The Kuo-Nan Liou Symposium

Highlighting Key Sessions at AMS 2024

The Kuo-Nan Liou Symposium at the 104th AMS Annual Meeting will celebrate Dr. Kuo-Nan Liou (1943-2021), a giant in the field of atmospheric physics who made crucial contributions in the areas of atmospheric radiation, remote sensing, and the greenhouse impacts of clouds and aerosols. Liou (pictured at right, image courtesy of Penny Jennings), received numerous accolades during his career, including the AMS’s Carl-Gustaf Rossby Research Medal and Charney Award, and he was part of the Intergovernmental Panel on Climate Change team who received the Nobel Peace Price in 2007.

We asked Symposium Co-Chair Ping Yang, University Distinguished Professor and David Bullock Harris Chair in Geosciences at Texas A&M University, about the Symposium and Dr. Liou’s impact. Here are some of his answers:

Dr. Kuo-Nan Liou (image credit: Penny Jennings)

Why are the areas of Dr. Liou’s research so important to understand right now?

As one of the most accomplished atmospheric scientists in the world, Dr. Liou made seminal contributions to atmospheric and climate sciences in many areas, particularly in atmospheric radiation. His radiative transfer model has been widely used in weather and climate models and satellite remote sensing implementations, and thus plays a central role in determining the radiation budget of the earth-atmosphere system and cloud-aerosol-radiation interactions and feedback in a changing world.

Radiative transfer is important because almost all the energy that drives the Earth’s atmosphere and ocean currents originates from the sun. Therefore, the climate of the Earth-atmosphere system is mainly determined by the radiation balance at the top of the atmosphere and the surface since radiation is the only mechanism by which the Earth-atmosphere system gains or loses energy.

What can attendees expect from the Symposium?

This symposium honors the legacy of Dr. Kuo-Nan Liou by bringing together researchers to share knowledge, foster collaborations and address current challenges in the fields where Dr. Kuo-Nan Liou left a lasting impact. Attendees, both in-person and virtual, can benefit from gaining insights into the latest research and advancements in these areas. Session topics include “Interactions Among Climate, Radiation, Clouds, Aerosols, and Surface”, “Radiative Transfer Theory & Spectroscopy,” “Remote Sensing of Clouds, Aerosols, and Surface Properties,” and “Light Scattering and Applications.” The Symposium will provide a platform for networking and engaging with experts and a forum for disseminating cutting-edge research findings.

The Symposium will delve into the forefront issues within these research areas. Noteworthy presentation topics include the lidar remote sensing of snow depth and density, sub-millimeter-wave remote sensing of ice clouds, Tibetan Plateau snowpack loss and its connection to extreme events, and more.

The first session aligns with the central focus of the 2024 AMS Annual Meeting, “Living in a Changing Environment.” It features invited speakers Drs. Ruby Leung, Dennis Hartmann, V. Ramaswamy, Zhanqing Li, Jonathan Jiang, and Yongkang Xue. 

How did Dr. Liou influence the fields of atmospheric and climate science?

Dr. Liou’s work left a profound mark on the atmospheric and climate sciences due to his seminal contributions to radiative transfer, atmospheric optics, cloud-aerosol-radiation-climate interactions, and remote sensing. He was a pioneering researcher who demonstrated that atmospheric radiation should no longer be consigned to the fringes of meteorology, but instead should take a central place in the new world of climate science.

His book, “An Introduction to Atmospheric Radiation,” now in its second edition (with the first edition published in 1980), has been an invaluable resource for students and researchers around the world studying atmospheric radiation and its applications in climate science and remote sensing. Accepting the Rossby Medal in 2018, Prof. Liou talked about how his own early-career exposure to books like Chandrasekhar’s “Radiative Transfer” and Born & Wolf’s “Principles of Optics” spurred his innovations. For example, his simplified solutions for understanding solar and heat energy transfer problems, and his application of geometric optics to understand the scattering, absorption, and polarization properties of soot aerosols and irregular ice crystals.

He also humbly thanked his graduate students at the University of Utah and UCLA, saying, “They deserve to share, in equal measure, any recognition I have received, including this great honor from AMS.” We, the organizers of the Symposium, in turn are grateful to Dr. Liou. Along with his exceptional impact on the atmospheric sciences, he was a true role model as a leader and educator.

Kuo-Nan Liou receiving the Carl-Gustaf Rossby Research Medal at the 2018 AMS Annual Meeting and celebrating with his family, students, and colleagues. Photos provided by Liou Symposium co-chairs.

The Kuo-Nan Liou Symposium will be held Tuesday, 30 January, 2024 at the AMS 104th Annual Meeting, in Baltimore and online; it will feature invited presentations and a poster session, along with a special luncheon. Learn more about the Symposium and view the program.

Be There: The Daniel Keyser Symposium

Highlighting Key Sessions at AMS 2024

The Daniel Keyser Symposium at the 104th AMS Annual Meeting will advance the science of synoptic-dynamic meteorology and celebrate the contributions of Prof. Daniel Keyser, a multifaceted researcher and educator. Keyser (pictured at right), a Fellow of the AMS and recipient of the AMS Meisinger Award and Lorenz Teaching Excellence Award, is well-known for his seminal work on cold-front updrafts and for co-originating the Shapiro–Keyser cyclone model.

We spoke with Symposium Co-Chair David Schultz, Professor of Synoptic Meteorology at the University of Manchester, about why the AMS community is celebrating synoptic-dynamic meteorology and Daniel Keyser’s contributions to the field. Here are a few excerpts:

Daniel Keyser

How has Daniel Keyser influenced the field of meteorology?

Dan is one of those people who don’t get the attention they deserve. He’s worked on so many things and worked with so many people. Yet he’s done so in a very humble way.

A lot of what we know about cold fronts is from the work that Dan did. Dan’s PhD was about understanding the circulation of cold fronts and the dynamics of that interaction with the boundary layer in driving the updraft air at the leading edge of the cold front. Later, he developed the concepts of vector frontogenesis and partitioning Q/F vectors into front-normal or front-parallel flows, which help us diagnose the frontal-scale circulations and the larger synoptic-scale circulations in which they are embedded. Also, the concept of the Shapiro–Keyser cyclone model is now commonly taught in meteorology programs. The region of high winds called the sting jet, which is common in North Atlantic cyclones that may impact western Europe, only occurs in Shapiro–Keyser cyclones. 

Not only has Dan been a great researcher, but he’s a great teacher at all levels, undergraduate and graduate. Much of my teaching philosophy comes from my time at Albany, from Dan and Lance Bosart. All four of us on the program committee, and so many others, have been influenced by Dan’s education over the years.

The Shapiro–Keyser Cyclone Model, image taken from Shapiro and Keyser (1990).

Give us a few highlights of the Symposium’s program.

The first session gives a perspective on Dan’s career, including Dan’s work on wildfires and how he’s influenced others. Wildfire enthusiasts will want to check that out. The second session is called “Jets and Cyclones,” the meat-and-potatoes of Dan’s work. There will be a number of talks about various aspects of fronts, on the frontal scale but also up to the planetary scale, and how things like predictability and planetary-scale circulations in different climates affect the relationship between things like precipitation and fronts. Then, the third session will feature prominent mid- and senior-career-level people speaking about fronts and frontal circulation, zooming in on the smaller scale.

Session four is about fronts and precipitation, and it closes with Dan’s own presentation. Sub-seasonal effects, precipitation extremes, convection—for anyone interested in severe, hazardous, or extreme weather (for example, the flooding in California), that will be an important talk.

Why is a symposium on synoptic-dynamic meteorology so important right now?

Synoptic-dynamic meteorology is where meteorological research started, and weather forecasts are better because of our research. Now more than ever, people need to understand the dynamics of extreme weather and take a more interdisciplinary approach to weather systems. There’s a lot of hazardous weather out there, losses from weather events are increasing, and of course many people will experience climate change through its impacts on certain weather events. So synoptic-dynamic meteorology still lies at the heart of the problems that humanity faces and learning how to mitigate them. Yet, despite its importance, we’re at this point where we synoptic-dynamic meteorologists have to fight for recognition and institutional support.

That’s one of the things that Dan really wanted to emphasize in his talk at the end of the day: “A Personal Perspective on the Continuing Importance and Value of Doctoral Education in Synoptic-Dynamic Meteorology.” His talk will help people outside synoptic-dynamic meteorology see how these talks all day during the Symposium relate to the importance of synoptic-dynamic meteorology and to societal resilience in general.

The Daniel Keyser Symposium will be held Monday, January 29, 2024 at the AMS 104th Annual Meeting, in Baltimore and online; it will feature invited presentations, a poster session, and a dinner with Keyser as the guest of honor. Learn more about the Symposium and view the program.

Irrigation and Storms in the Inner Mongolian Desert

Images from the DECODE project. Clockwise from top left: Microwave radiometer, wind LIDAR, researcher launching rawinsonde, eddy flux observation system, clouds forming at the boundary line, radar image of convective cells initiating along the boundary, photo of supercell storm growing from the boundary line. Photos courtesy of DECODE team.

A Research Spotlight from 32WAF/20Meso/28NWP

An irrigation oasis in Inner Mongolia, China, is providing unusual, real-world evidence about the effects of sharp vegetation contrasts on local and regional weather. Several presentations at the 32nd Conference on Weather Analysis and Forecasting, the 20th Conference on Mesoscale Processes, and the 28th Conference on Numerical Weather Prediction (32WAF/20Meso/28NWP) discussed findings from the 2022 DEsert-oasis COnvergence line and Deep convection Experiment (DECODE).

In Bayannur City, on the north side of a bend in the Yellow River, sits one of China’s largest irrigated areas: the 2,200-year-old, 769,333 hectare Hetao Irrigation District (HID), which was recognized as a World Heritage Irrigation Structure in 2019. All around this irrigation oasis is arid and semi-arid land, including the Kubuqi Desert to the south. We know that borders between land and water influence weather patterns, but there has been less real-world evidence gathered about the effects of differences in vegetation—and you can’t find a sharper divide than this one.

Image showing treeless mountains and sparsely vegetated foothills next to flat land. In the center of the photo is a dark green area of vegetation which contrasts sharply with the otherwise brown/tan landscape. A road runs to one edge of the green area. At the very right of the image, in the middle distance, is a large, wide building with a bright blue roof.
Above: Aerial view showing part of the Hetao Irrigation District and its sharp contrast with the surrounding desert areas. Video still courtesy of Yijing Liu. Below: Diagram of the juxtaposition between the boundary and its associated convective initiation (CI) and downstream propagation relative to surrounding terrain in Hetao Irrigation District. Image courtesy of Zhiyong Meng.

When cooler air from the Irrigation District meets warm wind from the desert, an atmospheric boundary line can sometimes be seen on radar. During the summer, convection often initiates at this boundary—sometimes leading to impressive storms that can travel long distances. DECODE researchers used a comprehensive set of observations—from radar and satellite to balloon sondes to flyovers—to examine this phenomenon. Their mission was to understand how the boundary forms and under what circumstances it might create unusual weather.

Different views of the boundary. Images courtesy of Zhiyong Meng.

On average, in the three months of summer each year from 2012 to 2016, 60 days produced a boundary, and 44 percent of those boundaries resulted in convective initiation (CI), noted Zhiyong Meng, of Peking University, in her July 20 presentation during Session 16 of 32WAF/20Meso/28NWP. The DECODE field experiment itself lasted 36 days in 2022, from 5 July to 9 August. With two field stations located on the oasis side, and four on the desert side, the teams were able to observe 23 boundaries and 11 occurrences of deep convection initiation, and even one case of a tornado.

Video still with green agricultural fiels and dark storm clouds in the background. A tornado funnel cloud is seen in the right side of the image. The DECODE project logo appears at the top left.
A tornado documented by the DECODE research team. It was generated by a thunderstorm formed at the boundary line. Video still courtesy of Yijing Liu.
Video still shows a bright bolt of lightning in the far left of the image. In the bottom right, a laser wind LIDAR device sits on a rooftop, pointing in the direction of the storm.
Lightning strike during the DECODE experiment. Video still courtesy of Yijing Liu.

Yipeng Huang, of Xiamen Key Laboratory of Straits Meteorology, outlined the most common conditions leading to a boundary/CI in a 21 July presentation. The researchers found that a boundary is most likely on warm summer days, when synoptic forcing is relatively weak, with dominant southerly winds opposing the oasis breeze, and a temperature over the desert that is apparently warmer than over the oasis. They found that along the boundary line between the two masses of air, convection initiation may occur when enough moist air advects north at the west edge of the subtropical high, moves out over the dry desert, and converges with a cool oasis breeze in an environment with large enough instability. Hongjun Liu of Peking University presented the mechanism for this process in a case study on 21 July.

Diagram of boundary formation and convection initiation near Hetao Irrigation District. Image courtesy of Zhiyong Meng.

Meng described “The most beautiful case, on July 29 [2022, when] the boundary produced a CI and the storm became very strong; it actually produced five-millimeter hail in the eastern part of the oasis.” They were also able to observe another storm as it split into two separate supercells. On July 25, a preexisting storm that passed over the area dissipated somewhat, likely due to sinking air over the oasis, then re-initiated strongly once it reached the boundary/convergence line over the desert. On occasion, the boundary would extend over the oasis and strongly increase the precipitation there.

Radar and photograph images of a large thunderstorm forming along the boundary line in the Kubuqi Desert on 29 July, 2022.

In the presentation immediately following Meng’s, Murong Zhang of Xiamen University noted that the team’s real-time forecasts were able to predict the formation of the boundary line in 21 out of 23 cases, although predicting convection initiation was more difficult. They were only able to predict 6 out of 11 CIs, as the numerical model tended to over-predict surface temperature, but under-predict moisture. The observations obtained from DECODE have been used to effectively improve the surface heat flux over the irrigated area, as shown in a presentation by Xuelei Wang of Peking University on the first day of the conference. You can see more from the DECODE team in this video created as part of the project:

With researchers from many institutions* participating, DECODE is an epic undertaking to study a unique natural phenomenon. As field research pioneer Prof. Edward Zipser of Utah University noted after Zhang’s talk, it’s “a program that we want to hear more about.”     

Group photo of the DECODE onsite team at one of the desert stations. Photo courtesy of Yijing Liu.

*DECODE participating organizations include Peking University, Inner Mongolia Meteorological Bureau, Nanjing University of Information Science and Technology, Xiamen Key Laboratory of Straits Meteorology, Xiamen University, Nanjing University, National Satellite Meteorological Center, Foshan Meteorological Bureau, and Jiangxi Storm Hunting Videos Culture Co., Ltd.

Featured image collage: Images from the DECODE project. Clockwise from top left: Microwave radiometer, wind LIDAR, researcher launching rawinsonde, eddy flux observation system, clouds forming at the boundary line, radar image of convective cells initiating along the boundary, photo of supercell storm growing from the boundary line. Photos courtesy of DECODE team.

About 32WAF/20Meso/28NWP

Predicting and understanding storms and other weather events is a complex business with real-world impacts. The American Meteorological Society’s 32nd Conference on Weather Analysis and Forecasting/28th Conference on Numerical Weather Prediction/20th Conference on Mesoscale Processes brought researchers, forecasters, emergency managers, and more together to learn about and discuss the latest scientific developments. The conferences took place in Madison, WI, and online 17–21 July, 2023. Recordings of the sessions are available here.

Building Community to Solve the Big Challenges in Weather, Water, and Climate

Some thoughts following the AMS Summer Community Meeting

By Isabella Herrera, AMS Policy Program

How can the weather, water, and climate enterprise better collect and use socioeconomic data to keep vulnerable populations safe from environmental hazards? What are the challenges of establishing a national network to monitor the planetary boundary layer? How are we dealing with radio frequency interference that hampers weather monitoring and forecasting? These questions can be answered only through collaborative efforts across the weather, water, and climate enterprise. One of the most important roles of the American Meteorological Society is to convene meetings where WWC professionals can delve into these vital topics.

The AMS Summer Community Meeting is a perfect example of that convening ability in action. Professionals from the private, public, and academic sectors come together, both in person and virtually, to share their visions for the future of the weather, water, and climate enterprise(s). 

Having now worked for the American Meteorological Society for just over a year, I was very excited to have the opportunity to attend the AMS Summer Community Meeting for the first time in Minneapolis this August. At this two-day conference, attendees immersed themselves in discussions about current challenges, opportunities, and efforts throughout the AMS community and related fields.

A conduit for collaboration

As an in-person attendee this year, one thing that struck me was how the Summer Community Meeting served as a conduit for conversation. Information and ideas flowed easily between the various presenters, panelists, and the audience. For example, sessions focused on commercial radar services and NOAA research allowed the public and private sectors to share their perspectives. They presented pressing issues, opportunities for potential collaborations, and the work currently being done across the enterprise.

Summer Community Meeting attendees listen to a discussion of NOAA’s Next Generation Weather Radar (NEXRAD) system.

Some of the topics covered at this meeting included: updates on national policy; the NOAA Precipitation Prediction Grand Challenge; pressing issues in radar and forecasting, such as moving the national radar network beyond the WSR-88Ds; and the operations of the National Severe Storms Laboratory. My colleagues from AMS discussed the new and ongoing initiatives of the AMS Policy Program, such as: enhancing the effectiveness and potential of the weather enterprise over the next decade and beyond (see page 823 of the October issue of BAMS), the 2024 Summer Policy Colloquium, and the role of the AMS in enabling the future of both the climate and ocean enterprises.

Hurricane prediction gets personal

I was fascinated by some of the discussions about extreme weather and the increasing frequency of Billion-Dollar Weather and Climate Disasters. Attendees from the National Weather Service highlighted the widespread efforts to improve our forecasting and modeling of extreme weather events. 

Discussions about major tropical storms particularly resonated for me, especially with Hurricane Idalia making landfall in Florida during the Meeting. I was born, raised, and currently reside in the Sunshine State, so I’m well-attuned to hurricane season and planning for impending storms. Hurricane Idalia is a perfect example of how advancements in hurricane models and forecasting have allowed meteorologists and WWC professionals to more accurately predict and communicate extreme weather hazards (such as the rapid intensification of the storm right before it made landfall), thus saving lives. I was able to witness some of this behind-the-scenes work. 

Compared with being at home refreshing the National Hurricane Center’s webpage and listening to advisories on the local news, as I had during previous hurricane seasons, this was an invaluable experience.

Reunions

Photo: Larry Hopper and Isabella Herrera at the Summer Community Meeting
Isabella Herrera and Larry Hopper at the AMS 2023 Summer Community Meeting. Photo: Isabella Herrera.

I was delighted to see fellow AMS Summer Policy Colloquium alum Larry Hopper presenting on current and emerging radar technologies as part of a Panel Discussion on Weather Radar Research. Reconnecting with Colloquium alumni is something that I’m looking forward to at the AMS Annual Meeting in January, and although the dates have yet to be announced for next year’s Summer Community Meeting, I’m already excited to hear about the initiatives across the WWC enterprise for 2024.

I saw so many others reunite with their colleagues, too (from graduate school, from years of working in the field together, or from previous AMS meetings). It reminded me that, in addition to creating connections, collaborations, and conversation across the weather, water, and climate enterprise, the AMS has another integral part to play in this space: building community.

“Once in a Generation”: The 2022 Buffalo Blizzard

Truck in snowdrift

A Research Spotlight from 32WAF/28NWP/20Meso

On 23 December, 2022, David Zaff of the National Weather Service’s Buffalo office walked out into a blank white world of howling wind. He headed to his car to get supplies, knowing there was no way to get home. He and his coworkers were trapped at the office, in the middle of one of the most deadly and disastrous blizzards Buffalo has ever seen.

Video by David Zaff, showing whiteout conditions outside NWS Buffalo office, December 23, 2022.

At the height of the 2022 holiday travel season, the four-day blizzard and lake-effect snow event knocked out power for more than 100,000 people, paralyzed emergency services and holiday travel, and left at least 47 dead. New York Governor Kathy Hochul described it as “the most devastating storm in Buffalo’s long, storied history.” Yet days earlier, Zaff and colleagues encountered skepticism from the public as they worked to warn the region.

Presenting at the J3 Joint Session at the 32nd Conference on Weather Analysis and Forecasting, the 20th Conference on Mesoscale Processes, and the 28th Conference on Numerical Weather Prediction, Zaff talked about the disaster and how the NWS countered accusations of hyperbole to get the word out.

Sounding the Alarm

The December 2022 snow was shocking, but not surprising. The pattern was easy enough to recognize, even 7–10 days earlier: a large high-pressure ridge forming over the western U.S., with a major trough in the east. “We knew something big was coming,” said Zaff. Five days before the storm, even low-resolution models suggested a major event. Four days ahead, the NWS started ringing the alarm bell. “We started saying, ‘A powerful storm will impact the region heading into the holiday weekend.’”

Three days out, the NWS issued an unusually emphatic Area Forecast Discussion (AFD):

“Some of the parameters of this intense storm are forecast to be climatologically ‘off the charts’ … One could certainly describe this storm system as a once in a generation type of event.”

NWS Lead Forecaster Robert Hamilton, Tuesday, December 20, 2022

That caused a stir, but many on social media dismissed it as hype. “People started saying, ‘There goes the weather service again,’” says Zaff.

He tried to find a way to show the science graphically, highlighting the forecast as “‘outside’ the climatology” for the time of year.

The graphic and its accompanying description got attention. By then, NWS Buffalo was communicating in earnest, including on social media. A tweet with a text-filled screengrab of the Winter Weather Message received 485,000 views. “A picture is worth a thousand words,” Zaff said, “except when people actually read the words, and see how impressive this event might be.”

Left: Graphic showing forecast surface pressure for Friday, December 23, 2022, with shading showing the relative frequency of the forecast MSLP values in the Buffalo region at that time of year. Source: David Zaff.

Surviving the Storm

Before noon on 23 December, visibility dropped to near zero, and it remained that way until around midnight on 25 December. 500 Millibar heights were “extraordinary” as the pressure trough moved into the Ohio Valley, and surface-level pressure was similarly unbelievable. A top wind speed of 79 mph was measured in downtown Buffalo at 10:10 a.m. on the 23rd, and winds in the 60–70 mph range lasted for 12 hours. “[It was] just an incredible bomb cyclone,” Zaff said. “An incredible storm.”

Zaff and some colleagues slept at the office; others attempted to drive in whiteout conditions using GPS alone, while some got stuck in drifts near the office and had to leave their cars to hike the rest of the way. Meanwhile, firefighters and airport employees worked to rescue motorists trapped nearby.

On December 24, the City of Buffalo issued “the scariest tweet I’ve ever seen,” said Zaff. The tweet stated that there were “no emergency services available” for Buffalo and numerous other towns.

“We knew by this time that there were fatalities occurring,” Zaff said. “And it just got worse and worse.”

Blizzard conditions lasted a full 37 hours–and lake effect snow wouldn’t stop for another two days. Three power substations shut down, frozen solid. Hundreds of power poles fell, and a significant percentage of locals were without power during the storm’s peak (some for days afterwards).

The 47 fatalities included people stranded outside, others who died from hypothermia in their homes, and some deaths due to delayed EMS response, according to Erie County. Hundreds of motorists were stranded on roadways during the storm. The Buffalo Niagara International Airport, with a proud legacy of operating under even the most horrific conditions, was closed for six days.

Zaff didn’t return home until late afternoon on the 25th, 18 hours after official blizzard conditions were over and having clocked 50+ hours at the office. On the drive, he saw iced-over buildings and trucks buried in snowdrifts. “It reminded me of [the movie] The Day After Tomorrow. … The impacts were tremendous.”

In his AMS presentation, Zaff compared the 2022 event to disastrous storms in 1977 (20+ fatalities, 69 mph winds, only 12” of snow yet drifts swallowed homes) and 1985 (5 fatalities, 53 mph winds, 33” snow), as well as the “Great Christmas Storm” of 1878, one of the first well-documented lake effect snow events, though lake-effect processes weren’t understood at the time. “This will likely be the storm of comparison now,” he says. “Once-in-a-generation” turned out to be right.

Future Lessons

Moving forward, said Zaff later, “Our intention is to further our relations with our Core Partners, including elected officials, emergency management, and the media [and] provide more probabilistic information that supports our ongoing Impact Decision Support Services. We hope to improve our outreach as well, instilling more confidence with the public.”

NWS will continue to provide improved decision support for partners, which may lead to more proactive road and school closures that could save lives in the future.

Photo at top: Buffalo roadways at 4 p.m. on December 25, 2022, 18 hours after blizzard conditions had passed. Photo credit: David Zaff.

About 32WAF/20Meso/28NWP

Predicting and understanding storms and other weather events is a complex business with real-world impacts. The American Meteorological Society’s 32nd Conference on Weather Analysis and Forecasting/28th Conference on Numerical Weather Prediction/20th Conference on Mesoscale Processes brought researchers, forecasters, emergency managers, and more together to learn about and discuss the latest scientific developments. The conferences took place in Madison, WI, and online 17–21 July, 2023. Recordings of the sessions are available here.

Who Creates the Future of AMS Peer Review? Maybe You Do!

Banners of 12 AMS journals laid out in a grid

By Gwendolyn Whittaker, AMS Publications Director

For Peer Review Week 2023, AMS and other scholarly publishers have been asked to reflect on both the essential role that peer review plays in scholarly communication, and also “the future of peer review.” In this second of our two Peer Review Week posts, we’ll take a look at how all stakeholders in AMS publications can contribute to discussions about evolving AMS peer review–and where those discussions might take place.

An evolving practice

In support of its Mission to advance science for the benefit of society, AMS publishes 12 peer-reviewed, highly regarded scientific journals. That high regard is the result of deep commitment over many decades from AMS’s volunteer leadership and from thousands of volunteer Editors and reviewers across the disciplines AMS represents. 

Researchers will take part in peer review throughout their career—sometimes as an author, sometimes playing the role of reviewer. Some will take on a journal editor role as well, with the responsibility of facilitating the review process and determining the ultimate fate of manuscripts. 

Peer review is a human endeavor, and is thus subject to human failings. Individual and systemic biases, along with global economic and social inequities, impact who has access to both the process and the results of peer review. But as with all human endeavors, its users can re-shape peer review to better serve its purposes.

As firsthand users of the tool that is peer review, researchers are the first to point out that peer review is not perfect, and the first to note where change is needed to better serve the scientific community.

At another level, disciplinary communities—such as those convened by AMS through its scientific meetings and journals—set ethical standards and best practices that reflect the communities’ values and expectations. The peer review process can and does change as those needs and values evolve. 

Peer review at AMS

For AMS, this ongoing “review of peer review” is centered in the work of the Publications Commission. Every AMS Chief Editor and the Chair of the BAMS Editorial Board is on the Commission, bringing constructive and insightful feedback from their editors, authors, reviewers, and readers to the Commission’s deliberations. The Commission sets best practices for editors, authors, and reviewers to follow, makes recommendations to AMS staff on improving processes and platforms, and provides policy and strategic recommendations to the AMS Council. 

In recent years, a particular focus for the Commission has been how to integrate AMS’s overall commitment to equity, inclusion, and justice into the publications endeavor. The Commission summarized its thinking so far in a recent editorial published in all the journals: “Equity, Inclusion, and Justice: An Opportunity for Action for AMS Publications Stakeholders.” As noted in the editorial, the Commission will be looking closely at results from AMS’s organization-wide Equity Assessment (currently underway), which will likely inform how AMS peer review evolves. 

As always, peer review at AMS will be shaped by the commitment and needs of researchers themselves, and also by scrutiny and constructive critiques from those who rely on the results—and who need the scientific endeavor to continue serving society into the future.

Have thoughts of your own on the future of peer review? Want to know more about peer review at AMS? Want to know how to volunteer to be considered as a reviewer or editor? Find out more or email us at [email protected]. We’ll be happy to hear from you!

What Do Non-Scientists Need to Understand about Peer Review?

Thoughts from AMS 2024 Editor’s Award Recipients

Peer Review Week 2023 logo

Understanding the role of peer review in science is vital not only for scientists themselves, but also for all of us who live in a society that relies on scientific research. Each September during Peer Review Week, AMS and other scholarly publishers highlight the essential role that peer review plays in scholarly communication.

In this first of two Peer Review Week posts, we’re hearing from some of AMS’s outstanding peer reviewers, recipients of the 2024 Editor’s Award, about what they think non-researchers need to understand about peer review.

At a basic level it is a check on, “do I believe the results presented here and the implications that are claimed?The check is made by other researchers working independently in the field. The checking of a single paper isn’t exhaustive, but there is an ongoing process—results and ideas established in one paper will, if they are of any significance, be re-examined and developed further in subsequent papers, which will themselves be peer reviewed.

Dr. Peter Haynes, Cambridge University
Dr. David Bodine

For non-researchers, I think it’s important to understand that peer review requires substantial effort … by volunteer reviewers, editors, and [the] scientists submitting manuscripts. A well-coordinated review process by all involved improves the quality and ensures the integrity of scientific research.

Dr. David Bodine, University of Oklahoma

Dr. Elizabeth Yankovsky

The peer review process is the only barrier standing between the writing of a scientific study and its publication. It is very easy for an unsubstantiated or erroneous paper to set an entire field back by years. In my opinion, the peer review process is as important as the research that goes into a given paper. … A given scientist may have one perspective and associated biases. Through peer review, the results are assessed by other scientists and are judged against the state of knowledge of the field. To push our boundary with the unknown forward, scientists must rely on both the historical backbone of their field as well as thorough review by their modern-day peers.

Dr. Elizabeth Yankovsky, New York University

Just because a paper was published after undergoing “peer review” does not make it absolutely correct or perfect, nor is it the final message on that idea. Unfortunately I feel the phrase “peer reviewed” is often used to imply some absolute consensus on a subject has been reached, when in reality it’s an ongoing, necessary criticism of the science that we do. As scientists we are constantly peer-reviewing each other’s work, and this may spark new, contrary ideas to be published that refute earlier findings.

Dr. Luke Madaus, Jupiter Intelligence
Dr. Sarah Buckland

Popular culture oftentimes misconstrues science in either the extreme of being purely political/agenda-driven or being the ultimate source of truth without question. The truth is, science is not ultimate, and understandings of processes and concepts are dynamic, and, as is especially evident in interdisciplinary research, scientists do have perspectives shaped by experiences. While I also cannot deny that bias exists in scientific fields and that contrasting perspectives may filter out at times, authentically anonymous and double-anonymous peer review processes (i.e., the reviewer not knowing the authors’ name(s)), act as guardrails to significantly reduce bias. [If] these processes remain clean and the selected reviewers are indeed experts in the field of the papers that they review, this significantly aids in ensuring that the end product is of the highest quality. The existence of these processes is why academic journals are deemed among the most credible sources of scientific information.

Dr. Sarah Buckland, University of the West Indies

Dr. Mimi Hughes

I think what I wish non-researchers understood about the scientific review process is how many eyes are on these papers before they’re published, and how that regularly improves the science and writing of the end-product. Most reviewers take the responsibility very seriously, and indeed are usually hesitant when they haven’t “found enough to fix” in a paper they review. It is typically a truly rigorous process.

Dr. Mimi Hughes, NOAA Physical Sciences Laboratory

Dr. Aaron Hill

I think non-researchers should know that peer review is only good and valuable when it is conducted from an unbiased position. It is vitally important that authors receive unbiased, external perspectives on their work in order to ensure that any gaps or misunderstandings can be addressed, and that the science is technically sound. Peer review is just ONE step in the scientific process as well, and sometimes bad work slips through the cracks of review. But peer review is a critical component to upholding and advancing science.

Dr. Aaron Hill, Colorado State University

Dr. Qiaohong Sun

Peer review serves as a crucial method for the scientific community to uphold the quality and credibility of scientific information accessible to the public. A paper passing peer review doesn’t guarantee absolute perfection, it indicates a level of examination and approval by experts in the field to some extent at the current time.

Dr. Qiaohong Sun, Nanjing University of Information Science and Technology

Dr. Sebastian Lerch

Peer review is a critical control mechanism in the scientific process. Mistakes can happen and may still get through the process. However, the collective nature of peer review and subsequent scrutiny by the scientific community help correct errors over time. This in particular highlights the importance of making research reproducible by publishing data and code.

Dr. Sebastian Lerch, Karlsruhe Institute of Technology

Dr. Andrew Feldman

It works! It is the main mechanism that keeps science reliable and transparent. Scientists respect and cite published work. In order to get science published, it needs to be read by 2-4 anonymous colleagues and editors and then revised. Even when it goes wrong and a paper is published with an error or not-well-supported argument, researchers are good at detecting this after the fact. It is a robust process that keeps the advancement of knowledge at a high-quality and transparent level.

Dr. Andrew Feldman, NASA Goddard Space Flight Center

A Few Takeaways from the “State of the Climate in 2022”

Map of significant global weather and climate anomalies and events of 2022.

Record-high greenhouse gases, sea levels, monsoons, and droughts—and a volcanic vapor injection

By Michael Alexander, Lead, Atmosphere Ocean Processes and Predictability (AOPP) Division, NOAA, and BAMS Special Editor for Climate

The annual NOAA/AMS State of the Climate report has just been released, with a comprehensive global look at the climate in 2022. Produced by the NOAA National Centers for Environmental Information (NCEI) and the American Meteorological Society, the State of the Climate Report maps out the complex, interconnected climate phenomena affecting all parts of the globe. It also charts global progress in observing and understanding our climate system. 570 scientists from 60 countries contributed to this year’s report, including a rigorous peer review, making it a truly global endeavor. 

As the senior editor on this project, I wanted to share with you a few highlights. Click here to read the full report, published as a supplement to the Bulletin of the American Meteorological Society.

New record-highs for atmospheric greenhouse gases CO2, methane, and nitrous oxide.

It was yet another record-setting year for atmospheric carbon dioxide and other greenhouse gases. 2022 saw an average concentration of 417.1 ± 0.1 ppm for atmospheric CO2; methane and nitrous oxide also reached record highs. 

Graphs of yearly global surface temperature compared to the 1991-2020 average for each year from 1900 to 2022, from 6 data records, overlaid on a GOES-16 satellite image from September 22, 2022.  Image credit: NOAA Climate.gov.

Warmest La Niña year on record.

Despite being in the typically cooler La Niña phase of ENSO, 2022 was among the six warmest years on record, and was the warmest La Niña year ever recorded. Summer heat waves left annual temperatures at near-record highs in Europe, China, the Arctic, and Antarctica (parts of Europe set daily or seasonal heat records), and New Zealand experienced its warmest year ever. High-pressure “heat domes” helped elevate local temperatures in many areas, including parts of North America and Europe. 

Record-high global mean sea level and ocean heat.

Global mean sea level reached 101.2mm above 1993 levels, setting a new record for the 11th year in a row. 2022 also saw record-high global ocean heat content (as measured to 2000 meters below the surface), although La Niña moderated sea-surface temperatures.

Image credit: NOAA

Complex climate picture.

Global warming trends continued apace, but of course numerous large-scale climate patterns complicated the picture. In 2022 we saw the first “triple-dip” La Niña event (third consecutive La Niña year) of the 21st century. The Indian Ocean Dipole had one of its strongest negative events since 1982, which led to increased temperatures and precipitation in the eastern Indian Ocean. Along with La Niña, this contributed to record-breaking monsoon rains in Pakistan that caused massive flooding and one of the world’s costliest natural disasters. We also had a positive-phase winter and summer North Atlantic Oscillation affecting weather in parts of the Northern Hemisphere. 

A bad year for drought.

For the first time ever, in August 2022, 6.2% of the global land surface experienced extreme drought in the same month, and 29% of global land experienced at least moderate drought. Record-breaking droughts continued in equatorial East Africa and central Chile. Meanwhile, parts of Europe experienced one of their worst droughts in history, and China’s Yangtze River reached record-low levels.

Warmth and high precipitation at the poles.

2022 was the firth-warmest year recorded for the Arctic, and precipitation was at its third-highest level since 1950. The trend toward loss of multi-year sea ice continued. Meanwhile, Antarctic weather stations recorded their second-warmest year ever, including a heatwave event that collapsed the Conger Ice Shelf, and two new all-time record lows in sea-ice extent and area set in February. On the other hand, record snow/icefall due to atmospheric rivers led to the continent’s highest recorded snow/ice accumulation since 1993.

Image credit: NOAA

Notable storms: Ian and Fiona.

85 named tropical cyclones were observed across all ocean basins, an approximately average number. Although there were only three Category 5 storms, and the lowest recorded global accumulated cyclone energy, the year produced Hurricane Ian, the third-costliest disaster in U.S. history, as well as Hurricane Fiona, Atlantic Canada’s most destructive cyclone.

Massive volcanic injection of atmospheric water vapor.

The Hunga Tonga-Hunga Ha’apai submarine volcano in the South Pacific injected a water plume into the atmosphere of unprecedented magnitude (146+/-5 Terragrams, about 10% of the stratosphere’s total water) and height (reaching into the mesosphere). We don’t yet know what, if any, long-term effects this will have on the global climate, although the increase in water vapor has interfered with some earth system observations. 

The full report is a comprehensive and fascinating analysis of our climate system in the previous calendar year. I urge you to read it and communicate your own takeaways from the State of the Climate in 2022. You can read the press release here.

Infographic at top: World map showing locations of significant climate anomalies and events in 2022. Credit: NOAA.