How is Weather Research Changing?

A 2024 AMS Summer Community Meeting highlight

The AMS Summer Community Meeting (SCM) drew exceptional attendance and engagement this year as people across sectors helped inform a major upcoming report on the Weather Enterprise. The AMS Weather Enterprise Study will provide a comprehensive picture of the shifting landscape of weather-related fields to inform our joint future. At the 2024 SCM, working groups discussed what they’d found about key issues facing the enterprise, and asked for feedback from the community. 

Here are a few takeaways from the Research Enterprise working group, as reported by Daniel Rothenberg of Brightband.

Photo courtesy of Daniel Rothenberg.

How has the weather research landscape shifted in the last decade or so?

Two of the most important shifts have been a movement of exploratory and applied research from the public to the private sector, and the rise in importance of “data science” and other hybrid roles blending a mixture of domain expertise and broader engineering and technical skills. 

Possibly the biggest example of these shifts coming together has been the advent of AI-based weather forecasting tools, although it also shows in trends such as the rise of private companies operating earth observation platforms.

What were the principal themes that came out of your working group’s discussions?

One major theme we discussed was the balance of responsibilities across the traditional weather enterprise. Initiatives such as building and launching satellite constellations or developing new weather models were at one point solely within the remit of the public sector (due to complexity and cost), but are now commonly undertaken by the private sector – sometimes even at start-up companies.

This re-balancing opens as many opportunities as it does challenges, and leads to another major theme: how we can best prepare for the workforce needs of today and tomorrow. Meteorologists will increasingly need to apply technical skills such as software development and data science alongside ones from the social sciences; preparing our current and future workforce for these demands will be a challenge in its own right.

A third major theme is that the weather enterprise is getting bigger. We’re not just a community of meteorologists anymore. Increasingly, critical work related to weather, water, climate, and their impacts on society is being undertaken beyond the traditional boundaries of our enterprise. There is a significant opportunity to improve society’s resilience if we as a community are able to build relationships with the new institutions working on these issues in a collaborative, interdisciplinary manner.

What are the main challenges you have identified?

Better accounting for how we ought to invest limited – and declining – federal resources will be a significant and contentious challenge, only complicated by the shifts in priorities and capabilities across the enterprise.

Those shifts motivate a second key challenge, which is clarifying who in the enterprise is accountable for, or has ownership over, certain areas. For example, NOAA makes available nearly all of the observations used in its operational forecast models, with some exceptions for proprietary data from commercial entities. But as more private companies try to sell data to NOAA, how will this balance hold? What if those private companies move towards selling actual weather modeling capabilities or services – perhaps a proprietary AI-based weather model – to the government? In the case of expanding commercial data purchases, who is responsible for maintaining and improving our data assimilation capabilities? 

Coordinating many actors across the enterprise, in a manner that most effectively serves our mission to society, will be a key challenge we must navigate in the coming years.

What preliminary recommendations or future directions have you discussed?

Our tentative recommendations revolve around building robustness. We encourage academic organizations who train our future meteorologists to consider how to prepare these students to work in a multidisciplinary capacity, and to embrace data science skills. Not everyone needs to be an interdisciplinary scientist, but it’s vital that our students learn how to apply their deep domain knowledge as part of a team of such individuals.

We also acknowledge that the rise of AI/ML techniques is changing the demands of our computing and data infrastructure. Not only must our workforce learn to adapt to these technologies, but we must consider how the enterprise will support enabling them: for example, by ensuring that in addition to large, traditional high-performance computing resources, we provide access to GPUs and similar tools. As part of this re-evaluation, we must evolve the ways in which we as a community define our priorities for federal research funding

What did you hear from the community at the SCM?

We thank the community for the warm reception to our assessments at the Summer Community Meeting. Many of the themes we touched on – the re-balancing of capabilities across the enterprise, the emergence of AI/ML and its implications, as well as core workforce development concerns – were echoed across many other working groups, underscoring their importance.

Within our group, we also discussed the growing importance of convergence science, which was echoed several times throughout the meeting. Convergence science, which involves coordinating diverse, interdisciplinary research teams with real stakeholders to solve societally relevant problems, is likely to be an important mechanism of translational research in the future, but we (and others at the meeting) identified a need for federal agencies to devote more resources earmarked for this sort of work in order to complement traditional, siloed funding programs.

Want to join a Weather Enterprise Study working group? Email [email protected].

About the Weather Enterprise Study

The AMS Policy Program, working closely with the volunteer leadership of the Commission on the Weather, Water, and Climate Enterprise, is conducting a two-year effort (2023-2025) to assess how well the weather enterprise is performing, and to potentially develop new recommendations for how it might serve the public even better. Learn more here, give us your input via Google Forms, or get involved by contacting [email protected].  

About the AMS Summer Community Meeting

The AMS Summer Community Meeting (SCM) is a special time for professionals from academia, industry, government, and NGOs to come together to discuss broader strategic priorities, identify challenges to be addressed and opportunities to collaborate, and share points of view on pressing topics. The SCM provides a unique, informal setting for constructive deliberation of current issues and development of a shared vision for the future. The 2024 Summer Community Meeting took place August 5-6 in Washington, DC, and focused special attention on the Weather Enterprise, with opportunities for the entire community to learn about, discuss, debate, and extend some of the preliminary findings coming from the AMS Weather Enterprise Study.

Beach Safety for Broadcasters

A pier at Myrtle Beach

A session highlight from the 51st Conference on Broadcast Meteorology/7th Conference on Weather Warnings and Communication

By Katie Pflaumer, AMS staff

The ocean looked aggressive. It was 6:45 a.m. on June 13 in Myrtle Beach, South Carolina, and my weather app was warning me about the possibilities of dangerous currents. A coastal hazard statement was in effect.

The waves—dark under early-morning cloud—pulled and crashed messily, much stronger than they’d been the day before. Some were coming in at an angle, bending southward down the beach. Whitecaps littered the water’s surface and the air was loud with the waves and wind. 

Bruckner Chase was thrilled. “These are exactly the kinds of conditions we’re trying to teach you about,” he said.

I’d met up with him on the beach, along with his NOAA Wave Safe program colleagues Dr. Michelle Evans-Chase and Patrick Roach, other AMS staff, and several broadcast meteorologists who’d signed up for the “Blue IQ: Water, Waves, Weather and Coastal Safety” course at the 51st Conference on Broadcast Meteorology/Seventh Conference on Weather Warnings and Communication. It was an unusual meeting session, organized to help weather communicators—especially broadcast meteorologists—better engage with the public about beach safety. 

What follows are a few takeaways from that morning, and from a later Weather Band webinar that recapped the session.

As we walked gradually towards the surf, our discussion focused on the three “zones” of ocean safety—the safe zone, the awareness zone, and the impact zone. There are important things to pay attention to in all three.

Safe Zone

The safe zone—far back from where any waves might reach—is a place to take inventory and get the lay of the land, as well as making sure you have all the supplies you may need.

Bruckner Chase (center) and Patrick Roach talk to BlueIQ participants.
Bruckner Chase (center) and Patrick Roach talk to BlueIQ participants in the Safe Zone. Photo: AMS staff.

Wait and Watch. The ocean, as Chase noted, is a constantly changing environment. The most important thing you can do is to pay attention. “Every beach is different [and due to tidal changes], that beach is also different from morning to afternoon,” said Chase during the webinar. “[If] you’ve got a sandbar that was under 3 feet of water and is now under 6 inches … now it’s become dangerous.” 

Note any hazards (like piers or areas where waves are breaking strangely) and think about the height, direction, and roughness of the waves. Wind direction will impact wave behavior, and winds coming from the ocean or along the beach can make for more challenging conditions. Take time to observe what’s happening.

“Many people will look [at the waves] for a minute or two and go, oh, it’s fine. I watch the water 10 to 15 minutes at least, because waves will come in sets, conditions will change, it’s not always the same.”

—Bruckner Chase

Listen to the Experts. Lifeguards and surfers are often great sources for information about your beach. Always swim near lifeguards and pay attention to any signs or messaging about when and where you can swim safely. 

Weather Aware. Conditions at the nearest weather reporting station may not reflect conditions at the coast. For example, in early summer, cold water and warm air can create dense fog right along the beach. “It can get to where you can’t see the shore,” said Michelle Evans-Chase. Weather communicators can help make their audience aware of these possible localized events. 

Yet the general weather forecast is still important. If a storm is approaching, for example, people need to know to get out of the water and off the beach, as lightning can strike miles ahead of a storm. 

Hazards and Tides. Your weather forecast office may also issue information about beach hazards. They had done so for Myrtle Beach today: strong longshore currents (running parallel to the beach) were highly likely, and rip currents (which can pull swimmers out towards the ocean) were moderately likely. Weather reports may also list the times of high and low tide, which can dramatically impact water conditions due to depth changes across sand bars or submerged hazards. Be careful around inlets when the tide is changing; strong tidal-driven currents may funnel through calm-appearing waters.

From our vantage point the day of the session, we could see signs of the longshore current scrambling the waves. Beach forecasts often include rip current risk, but longshore currents can also be very dangerous, sweeping you down the beach and making it hard to get back to shore. If you’re on a small beach surrounded by more challenging terrain, such a current could even drag you past the safe landing area. A final note on the safe zone: Make sure you know where it actually is. “Sneaker” waves—unusually large waves—may come much farther up the beach than expected. On rocky shorelines (common in the Pacific Northwest), these waves can pull people off the rocks into very cold water. The same can happen on piers and jetties. Even if a vantage point appears safe, heed any signage telling you not to go out there, and always pay attention to what’s happening in the water.

Awareness Zone

Once you walk closer to the surf, you’ll have a better sense of what your ocean experience will be like. When our little class left the area of the dunes, we were less shielded from the wind, and the waves seemed louder and taller than when we’d looked at them from above. Chase had us all lie down near the edge of the water, noting how large two- or three-foot waves can seem once you’re in them. Getting hit by even a smallish wave at the wrong angle can cause serious injury, so never underestimate surf.

“If … it’s your first trip to the beach, two feet doesn’t sound like much. … But a mass of water moving at you every six seconds that’s two feet high is a lot different and harder to navigate.”

—Bruckner Chase
People lying down at the water's edge
Blue IQ session participants lie down at the edge of the water for a different perspective on the day’s waves. Photo: AMS staff.

Prepare to get in the water by orienting yourself. Line yourself up with a very specific landmark—pick something colorful and uniquely shaped that you can look back and easily identify (we used the water slide in front of our hotel). This is also important in an emergency, as EMS will need to know where to enter the beach to get to you.

Impact Zone

The impact zone, more technically known as the swash zone, is where waves are washing up on the sand and receding. This is where you’re getting into the water. 

Be Prepared. Depending on water temperature, be prepared for a cold shock that could impact motor function. As Chase reminded us, “If you’re in a dangerous situation [and numb from the cold], you may lose the ability to effectively move out of it.” Be aware that the beach can drop off rapidly, and you could suddenly find yourself deeper than expected.

Move Efficiently. Chase outlined techniques for making efficient progress through the surf and conserving energy. Walking in sideways means less of your body has to fight through a wave. Diving underneath approaching waves can be another good way to make progress; things are much more peaceful under the water. Stick your fingers in the sand to make sure you go deep enough and to help you stay oriented.

Remain Calm. Chase’s techniques worked well, yet we all struggled to get out into waist deep water the morning of the session. The longshore current pulled relentlessly, and the waves—which hit us every few seconds as they piled up close to shore—made me grateful to be surrounded by trained lifeguards. Even with our feet mostly on the ground, we were soon swept 30-40 meters down the beach. If we’d gone out further, the currents might have made it hard to get back in.

BlueIQ participants wade in the ocean
Blue IQ session participants wade in waist-deep water. Photo: AMS staff.

If you’re caught in a rip current, standard advice is to swim perpendicular to the direction the current is moving you to escape this narrow, ocean flowing band of water (which will normally weaken once you get further out). Then, carefully swim at an angle towards the shore, always being aware of large waves that may be coming up behind you. 

If you’re struggling in a longshore/long beach current, however, the best course of action is to head directly for the beach, which will be perpendicular to that current. Don’t worry too much about exiting the water exactly where you started—just get out where you can. Chase noted that while many people have heard what to do in a rip current, few are aware of the strength of longshore currents that can move you hundreds of yards or more along a beach.

Even if you’re a strong swimmer in the pool, don’t expect to feel equally strong and fast in the ocean, even on a calm day. “Most swimmers are going to have trouble navigating these dynamic conditions and feeling as comfortable in the surf as they do at their local swimming pool,” Chase told us. So the key thing to remember in a dangerous situation is: relax. Stay calm and use your energy tactically. “Give people time to come and help you, for the EMS system to be activated, for a lifeguard to come and find you.” If you see someone in trouble, take 10 seconds to alert a lifeguard or 911 and find productive ways to help. Watch the NOAA Wave Safe “Take 10” video.

No matter what beach you go to, the philosophy is, respect the ocean. “Even if you’ve been visiting the same beach for 10 years and you know that break and you’re comfortable sending your kids out there, one nor’easter or one storm can dramatically change that,” said Chase. “So it’s not just [that] each beach is different, which it very much is, but that beach can also change from hour to hour and definitely from year to year.”

Learn More

Share NOAA’s Wave Safe videos to help your friends and family, or the public at large, understand beach safety concepts. 

View a news story by Blue IQ session attendee Jeremy Lewan, featuring some of his takeaways from the session.

Watch the Weather Band Webinar

Read Bruckner Chase’s Weather Band article for additional tips.

See experimental beach forecasts at Weather.gov/beach

More NOAA beach safety resources.

About 51Broadcast/7WWC

The 51st Conference on Broadcast Meteorology and Seventh Conference on Weather Warnings and Communication took place in Myrtle Beach, South Carolina, on 12-14 June, 2024, hosted by the American Meteorological Society (AMS). The 51st Conference on Broadcast Meteorology is organized by the AMS Board on Broadcast Meteorology and invites broadcast meteorologists from across the United States to network and share professional knowledge. The Seventh Conference on Weather Warnings and Communication features cutting-edge research on weather communication strategies, challenges, and impacts, and is organized by the AMS Board on Societal Impacts

Addressing Extreme Heat and Climate Change Adaptation

Jessica Stewart at the AMS 2024 Science Policy Colloquium

Reflections on the 2024 AMS Science Policy Colloquium

By Jessica Stewart, MHA, MPH, student DrPH, The George Washington University

Note: This is a guest blog post; it represents the views of the author alone and not the American Meteorological Society or the AMS Policy Program. The Science Policy Colloquium is non-partisan and non-prescriptive, and promotes understanding of the policy process, not any particular viewpoint(s).

The 2024 AMS Science Policy Colloquium was a deeply enriching experience, offering valuable insights and fostering new connections. As a second-year doctoral student focusing on climate change adaptation and interest in integration of policy and governance, I found the colloquium’s session discussions to be both inspiring and pivotal for my research and professional growth.

Insights into Policymaking

The colloquium provided a detailed exploration of the policy-making process, which I’ll admit I did not fully understand at first. The sessions highlighted the crucial role of effectively communicating scientific findings, showing how this communication can significantly shape policies affecting our world. This realization drove home the impact and importance of my own dissertation research. Engaging with policymakers and federal officials gave me a real-world perspective on the complexities of policymaking and the collaborative efforts needed to enact meaningful changes.
Networking with a diverse group of students, agency professionals, scientists, and industry leaders was invaluable. These interactions offered fresh perspectives on my research interests and opened doors for future collaborations.

Integrating Climate Change Adaptation into Policy

I was able to find a community of other students and agency professionals who were actively engaged in extreme heat research, and we started sharing ideas—a topic that is particularly significant to me as I thought about my home state of California. California has faced increasingly severe heatwaves and droughts, which have serious effects on public health, infrastructure, and ecosystems. These extreme weather events not only strain the healthcare system but also damage critical infrastructure, such as roads, bridges, and water systems. Additionally, they disrupt the balance of natural environments, leading to loss of biodiversity and increased risk of wildfires.

My research interests explore how new technologies, predictive modeling, and resilient infrastructure can be used to adapt to the escalating challenges of climate change. Making sure these technological solutions fit into policy frameworks is key to their success and long-term sustainability. Policies need to be effective and forward-thinking to accommodate emerging technologies and integrate scientific research into practical applications. This alignment ensures that innovations are not only developed but also effectively implemented, providing real-world benefits and enhancing the resilience of communities against the growing threats posed by climate change.

The dynamic discussions on science, technology and its far-reaching impacts were incredibly insightful. This is one of the many products of the colloquium, this vibrant exchange of ideas and solutions, showcasing a united commitment to tackling today’s challenges and preparing for a more resilient future.

Moving Forward

The AMS Science Policy Colloquium has profoundly deepened my understanding of the intersection between science and policy. The insights and connections I gained will significantly enhance my contributions to the field of science. It was an incredibly enriching experience, providing invaluable insights, professional connections, and strengthened my sense of purpose.

About the AMS Science Policy Colloquium

The AMS Science Policy Colloquium is an intensive and non-partisan introduction to the United States federal policy process for scientists and practitioners. Participants meet with congressional staff, officials from the executive office of the President, and leaders from executive branch agencies. They learn first-hand about the interplay of policy, politics, and procedure through legislative exercises. Alumni of this career-shaping experience have gone on to serve in crucial roles for the nation and the scientific community including the highest levels of leadership in the National Weather Service, the Office of Science and Technology Policy (OSTP), the National Science Foundation, and the U.S. Global Change Research Program (USGCRP), and AMS itself.

The Summer Community Meeting: Why is this year’s meeting so important?

People talking at SCM

Join us August 5–6 in Washington, D.C., as we work to ensure a robust Weather, Water, and Climate Enterprise

By Keith L. Seitter, AMS Senior Policy Fellow and Executive Director Emeritus

The AMS Summer Community Meeting (SCM) is a vital gathering for our community, and one that has played a significant role in shaping the success of the weather, water, and climate enterprise over the past two decades. If you’ve never been to one, it might not be clear why I say that, so as someone who’s attended these meetings from the start, let me explain why they have been so important — and why I am so excited about this year’s SCM.

The SCM was one component of the AMS response to recommendations in the 2003 National Research Council “Fair Weather” report. Many of us view this report as a turning point for the entire community. It acknowledged the serious tensions that existed at the time between the private and government sectors and offered concrete steps that could reduce those tensions and lead to more effective service to the nation. From the standpoint of AMS and its role in supporting the community, the following recommendation was particularly important:

“Recommendation 3. The NWS and relevant academic, state, and private organizations should seek a neutral host, such as the American Meteorological Society, to provide a periodic dedicated venue for the weather enterprise as a whole to discuss issues related to the public-private partnership.”

“Executive Summary.” National Research Council. 2003. Fair Weather: Effective Partnership in Weather and Climate Services. Washington, DC: The National Academies Press. doi: 10.17226/10610.

The full AMS response included establishment, in 2004, of the Commission on the Weather and Climate Enterprise, which later had its scope expanded as the Commission on the Weather, Water, and Climate Enterprise (CWWCE). For the past two decades, as one of several important programs within CWWCE, the SCM has played a pivotal role in improving the collaboration in the weather enterprise and helped greatly reduce tensions and conflict among key players in the community.

We are now two decades past the “Fair Weather” report, and the weather enterprise is very different from those earlier times, with many more players, data from commercial weather satellites, artificial intelligence and machine learning technologies, and many other innovations that are reshaping weather-related fields. These innovations bring the potential for our community to offer even greater service to the nation and the world — if the entire enterprise can work effectively together. So AMS, in 2023, launched a significant study to look at the weather enterprise 20 years after “Fair Weather.” Over 100 volunteers from throughout the enterprise have been participating in the study during this year, and they have identified a number of issues as preliminary findings in that effort.

The 2024 Summer Community Meeting will present some of those key findings as a launching point for extended discussions on foundational issues facing the weather enterprise, now and in the coming decades. That means that this year’s SCM brings the meeting back to its roots two decades ago, and promises to be one of the most influential in recent memory. Among the issues to be discussed are:

  • How can academic programs evolve to create the workforce needed for the Enterprise of today and the future?
  • How can the private, academic, government, and NGO sectors work together to produce the best possible numerical weather prediction platforms?
  • How is the explosion of AI impacting predictions and services?
  • What is the best balance between government observations and commercial data buys?
  • How is the research enterprise changing in the face of new technologies?
  • How do we ensure open science and open data in an enterprise where more observations are under the control of the private sector?
  • How do we ensure our warnings, decision support, and other services are taking best advantage of the strengths of each sector of the community?

The SCM has always provided a unique opportunity for professionals from academia, industry, government, and NGOs to come together to discuss broader strategic priorities, identify challenges to be addressed and opportunities to collaborate, and share points of view on pressing topics. At this year’s SCM, attendees will also contribute to the conclusions and recommendations presented in an important AMS study that could help shape the future of the weather enterprise. I encourage you to consider attending this year’s SCM, regardless of your role in the enterprise, so that you can be part of building our community’s future.

As with all AMS meetings, the SCM will be conducted as a hybrid meeting, so even those who cannot make the trip to Washington, D.C., in person can still take part virtually. Find out more and learn how to register.

Bumpy Flight into Hurricane Ian Births a New Metric for Turbulence

Airplane over hurricane

A research spotlight from the 36th Conference on Hurricanes and Tropical Meteorology

NOAA’s WP-3D Orion “Hurricane Hunter” aircraft are no strangers to turbulence. Reconnaissance flights through hurricanes are by definition a tad bumpy.

A viral video taken aboard the Hurricane Hunter “Kermit” (NOAA42) as it flew through Hurricane Ian on 28 September, 2022, however, shows that even its experienced crew were shaken.

In the video, equipment is shown having fallen to the floor of the aircraft (“There goes the sondes!”), and after a camera-shaking bump, the crew can be heard reassuring each other, “We’re alright.”

Part of video of Hurricane Hunter flight into Hurricane Ian, September 28, 2022. Video courtesy of Nick Underwood.

“I’ve been flying hurricanes with NOAA for the last six years, and that was the worst flight that I’ve been on so far,” NOAA Programs and Integration Engineer Nick Underwood (who filmed the video) told MSNBC the next day. “We were coming through the western side of Hurricane Ian, it was intensifying up to its peak Category 4 strength, and we really got bounced around.”

As it turns out, the flight may have been the most turbulent ever on a Hurricane Hunter aircraft, at least in the past 20 years. In a study presented by Joshua Wadler of Embry-Riddle Aeronautical University at the 36th Conference on Hurricanes and Tropical Meteorology, researchers came up with new metrics to better quantify turbulence as experienced by an aircraft’s occupants—and ranked the top ten flights in Hurricane Hunter history.

“It was probably about ten minutes of really extreme turbulence,” said Wadler in his presentation during the “Innovative Observing Technologies to Advance Tropical Cyclone Operations and Research VI” session. As part of the flight crew, Wadler was on the team in charge of the Altius-600 small uncrewed aircraft system’s first-ever deployment into a hurricane.

“We were talking on the mission and we [thought], well, is this the bumpiest flight ever?” Wadler said. A few of the crew who had been flying such missions for decades seemed to think so. “We were like, okay, let’s try to figure it out.”

A bumpiness equation

Aside from corroborating hurricane researchers’ harrowing tales, understanding turbulence is becoming increasingly important given its predicted increase due to climate change, and with recent incidents including the death of a passenger during an exceptionally turbulent Singapore Airlines flight. Metrics for turbulence already exist, but most of those only represent vertical motion and focus on atmospheric properties rather than what happens to occupants. “We wanted … to have a 3-D turbulence metric, and one that describes the human experience,” said Wadler. 

When an aircraft rapidly accelerates  vertically or horizontally, everyone feels the dizzying rise or stomach-clenching drop. But if the aircraft rotates around its center of gravity in any direction, that acceleration will have different effects depending on where someone is seated–for example, when the aircraft tilts (or pitches) upward the people in the front of the aircraft will feel an upward acceleration while the people in the back will feel a downward acceleration. If the plane is also accelerating upwards, such as during takeoff, those in the front will experience a “double whammy” of acceleration. As Wadler noted, “Every seat on the plane experiences different rotational motions depending on where you are.”

Wadler and colleagues’ new “bumpiness” metric accounts for those differences. 

The research team combined flight-level data from all P-3 flights since 2004 (when high-enough-quality data became available). They calculated the acceleration forces acting on each seat in the plane relative to the plane’s center of gravity.

They defined the flight’s “bumpiness” by combining acceleration with jerk (the rate of change in acceleration over time), accounting for both in all three dimensions. This equation can be applied to any aircraft where the center of gravity and relative positions of the seats are known, and for which high-quality flight-level data are available. 

Bumpiness equation
Wadler and colleagues’ equation for defining “bumpiness” (B) in meters per second squared (m/s2).
Pilot's bed on floor

Their equation accounts equally for bumpiness in all directions, although it can be thrown off by sharp turns. Missions in which the plane turned sharply on purpose (for example, to calibrate instruments) were excluded from the team’s calculations.

Because the end result, the B or bumpiness value, values all dimensions of movement equally, it doesn’t always sync with what people expect. Some Twitter commenters belittled the video from the flight, possibly because it shows few large up-and-down bumps. The main types of motion experienced by the mission’s crew, however, were front-to-back and side-to-side.

<< The off-duty pilot’s bed was thrown from its bunk onto the floor during flight 20220928H1 into Hurricane Ian, due to lateral motion of the aircraft. Photo courtesy of Jake Barlow.

The bumpiest hurricane flights

The researchers calculated the top 10 bumpiest flights for each of the seats on the plane, based on the most turbulent part of each mission. 

WP-3D Orion seat map
Seat map of WP-3D Orion Hurricane Hunter aircraft. Image: Josh Wadler.

For the person in seat 1 (the “pilot flying,” in the front left seat on the plane), the Hurricane Ian flight was in fact the bumpiest by far—with a B value of 6.04 m/s2, 34% bumpier than any other flight for which good data were available. The second highest B value was experienced during Hurricane Irma in 2017 (B value: 4.5 m/s2), the third by a flight into Hurricane Sam in 2021 (B value: 4.39 m/s2). Subjective rankings from surveyed flight crews came up with a wide range of answers about their bumpiest flights, but were roughly in the same ballpark as those calculated by B value.

RankStorm NameMission IDMaximum Bumpiness Value (m/s2)
1IAN20220928H16.04
2IRMA20170908H24.50
3SAM20210929H24.39
4LANE(EP)20180822H14.28
5FELIX20070902H14.27
6DORIAN20190830H24.08
7PATRICIA(EP)20151023I14.05
8RAFAEL20121015H14.02
9GONZALO20141017I13.90
10DORIAN20190904H13.70
Rankings of B values for Hurricane Hunter flights since 2004, for the pilot in seat 1.

On the Hurricane Ian mission, the greatest B value (6.13 m/s2) was experienced by the second pilot, sitting in seat 2. Wadler was in seat 10. “I was very fearful during this mission,” he noted during his presentation. But, “lo and behold, my seat had the lowest [bumpiness] value by far.” The pilot in seat 1 experienced 37% worse turbulence than Wadler’s seat in the middle of the plane (6.04 m/s2 vs. 4.4 m/s2).

Seatmax Bumpiness (m/s2)
16.04
26.13
36.02
45.87
55.52
65.68
75.03
85.08
94.79
104.4
114.46
124.45
134.54
144.52
154.45
164.53
174.51
184.59
194.55
Rankings of B values for all seats on the Hurricane Hunter flight 20220928H1.

For seat 1, the Ian flight (Flight 20220928H1) ranked above all other flights for back-front and lateral motion. Yet in terms of up-down motion, a mission during Hurricane Lane ranked far higher, with a vertical B value of 17.1; Ian’s highest vertical B value was 8.43, ranking it seventh in terms of vertical motion. When all metrics are combined, however, the Ian flight came out on top. “It’s normal to have vertical bumps with eyewall updrafts and downdrafts,” Wadler noted in a later conversation, “but the lateral motions are rare. … The dropsondes went all over the cabin.”

Currently the bumpiness rankings only count the highest B value experienced during a flight. In future work, the research team aims to develop an equation that can account for cumulative bumpiness over time—a “queasiness index.” We’re well on the way to finding out what flights would make even the most iron-stomached hurricane hunter, in Wadler’s words, “very happy to be on the ground.”

Want to know more about what it’s like to fly a research mission into a hurricane? Take a virtual tour of a Hurricane Hunter aircraft “Miss Piggy.”

Header photo: View from NOAA WP-3D Hurricane Hunter aircraft “Kermit” during flight 20220928H1 into Hurricane Ian. Photo courtesy of Joshua Wadler.

About 36Hurricanes

The 36th Conference on Hurricanes and Tropical Meteorology brought together hundreds of hurricane researchers, modeling experts, forecasters, emergency managers, communicators, and more May 6-10, 2024, in Long Beach, California to discuss the latest in tropical cyclones and other tropical weather phenomena. It was hosted by the AMS Committee on Tropical Meteorology and Tropical Cyclones.

You can view the online program here. All conference presentations will become available to the public starting in August 2024.

Changing Coasts and Culture

Image of wave washing over a rocky beach

AMS 2024 Session Highlight: “Convergence Science in the Context of Integrating Weather and Climate Science with Studies of Marine and Coastal Resources and Geophysical Processes”

By Isabella Herrera, AMS Policy Program

One of the most challenging parts of planning out my week at the AMS Annual Meeting was choosing which symposia and sessions to attend in person, and which to catch on my laptop after leaving Baltimore. Convergence Science: Indigenous Weather, Water and Climate Knowledge Systems, Practices, and Communities was one of the symposia for which I knew I wanted to bein the room where it happens.” In this case, “the room” was in the Baltimore Convention Center, and unlike many scientific and political discussions throughout the history of the United States, these discussions focused on Indigenous voices and the need for the scientific community to more meaningfully engage with Indigenous science and Native peoples. 

The symposium centered on the work of the Rising Voices Center for Indigenous and Earth Sciences (co-administered by NCAR|UCAR and the Livelihoods Knowledge Exchange Network), including the Rising Voices: Changing Coasts (RVCC) research hub. As Lead Investigator Daniel Wildcat said in an opening address for the symposium, RVCC is “catalyzing efforts to bring Indigenous knowledge holders [together] with some of the best university-trained [physical] scientists in the world … to model what convergence science looks like if you include Indigenous wisdom and knowledge.” A short film was played during the morning session to honor the late Dr. Heather Lazrus, Rising Voices co-founder, and her work with Rising Voices. 

A panel discussion during the symposium, Convergence Science in the Context of Integrating Weather and Climate Science with Studies of Marine and Coastal Resources and Geophysical Processes, featured a variety of speakers working at the various intersections of weather, water, climate, marine, and Indigenous science. Here are some of the experiences and perspectives shared during this session.

The Convergence of Science and Identity: Being Native in Scientific Spaces

Robbie Hood, a citizen of the Cherokee Nation and atmospheric scientist, started off the session describing her experience having worked for both NASA and NOAA, and mentioned that although she’d been to many AMS Annual Meetings throughout her career, this was her first time being able to represent herself as a Cherokee. Hood emphasized the immense opportunity of convergence science in practice.

“To me, it’s just science,” said Kekuʻiapōiula (Kuʻi) Keliipuleole, a Native Hawaiian and researcher at the University of Hawaiʻi. Native peoples’ knowledge of and connection to their lands is expansive, and deep, and intimate, Keliipuleole explained to us as she introduced herself by naming her mountain (Makanui), her waters (Wai‘ōma‘o and Pūkele), her rain (Lililehua), and her winds (Lililehua and Wai‘ōma‘o). She spoke about being a Native person who studies native organisms in their environment, in Hawaiʻi for Hawaiʻi, and the complexities of merging her identity of being Native and a scientist – of integrating “western” science into her culture.

Photo of Daniel Wildcat speaking in front of a screen on which is displayed the words, "Rising Voices, Changing Coasts: A new/old approach to convergence science. Speakers: Daniel Wildcat, Paulette Blanchard, Diamond Tachera, Kyle Mandli, Julie Maldonado." Two people are sitting in front of the screen while Dr. Wildcat is standing.
RVCC Lead Investigator Daniel Wildcat giving an opening address during the first session of the Convergence Science symposium, “Rising Voices, Changing Coasts: A New/Old Approach to Convergence Science.” Photo credit: Isabella Herrera.

“From when we are babies, we are learning this method of kilo [a Hawaiian word literally translated as “observations,” but with much deeper meaning in practice] … It’s being able to know the rains and the winds,” she said. “I could tell you that this one tiny section in a road over from my road is constantly flooding … because the government paved a road over an old spring … I see this [particular microbial mat], and I know that comes from groundwater, so I know that that was a spring because I have this kilo, this observational experience.”

Historically, Indigenous scientists have often had to navigate the supposed duality of their identities – of being a scientist and a Native person – and have not been able to include their Indigenous knowledge in their work in the same way they can with the science taught to them through academic institutions. The convergence of western scientific knowledge and Indigenous knowledge is integral to the future of the WWC enterprise.

Suzanne Van Cooten, a citizen of the Chickasaw Nation and Regional Administrator of the USGS South Central Climate Adaptation Center (SC CASC), highlighted the importance of inviting Tribal nations and other groups that have historically been dismissed from climate and water conversations to scientific spaces. She shared her enthusiasm about the first time she was able to forecast for her homelands as a hydrologist.

Respectful Engagement, Not Exploitation

“I think a lot of the Tribes kind of feel like they get talked at more than they get talked with.”

-Daniel Wildcat
Three people sit in front of a screen (their names are listed in the caption below). The screen is displaying the words, "Convergence Science in the Context of Integrating Weather and Climate Science with Studies of Marine and Coastal Resources and Geophysical Processes.
Speakers: Robbie Hood, Suzanne Van Cooten, Ku'i Keliipuleole, Carlos Martinez, Casey Thornbrugh."
(left to right) Speakers Carlos Martinez, Kekuʻiapōiula (Kuʻi) Keliipuleole, and Suzanne Van Cooten during the panel session. Photo credit: Isabella Herrera.

The session also featured discussions of how to go about entering Indigenous spaces from the world of western (or, as Van Cooten prefers to say, colonial) science.

Carlos Martinez, a climate scientist, AAAS Science and Technology Policy Fellow, and program coordinator for the National Science Foundation Coastlines and People Program (CoPe), also serves as a board member of the AMS Board of Representation, Accessibility, Inclusion, and Diversity (BRAID). He talked about his experience working with communities on convergence science.

“One of the things I have learned [is] knowing my place in the room … understanding that what I share is through my lived experiences, and not imposing what other people’s experiences are,” Martinez told us. 

A humble, listening approach is important for effective engagement, yet non-Indigenous groups often fail to employ this approach when entering Indigenous spaces. “I think a lot of the Tribes kind of feel like they get talked at more than they get talked with,” Daniel Wildcat said. “This is systemic.”

“When immersing in a space with convergence science in mind, [one thing I learned is] actively listening; for example … listening to what the communities are interested in learning, what their needs and concerns are, and then if willing, provide resources or information in communication with one another,” Martinez said. “I always take criticism and feedback as a way for growth, as a way that I can be … a better scientist and a better human being.” 

Non-Indigenous scientists should consider their intent versus impact when working with Indigenous communities. Historically, the scientific community has engaged with Indigenous peoples in a way that has been exploitative and continues to perpetuate colonialism, even if the work itself was initially intended to benefit those same communities. 

“If you want to work with Indigenous people, then you’ve got to change how you think about what that work requires,” Wildcat told us. 

Aspects of science and academia can become obstacles to building trusting relationships – something that is deeply important in working with Indigenous people. Most researchers and policymakers aren’t able to spend the time to establish meaningful and authentic relationships with the tribes they may want to work with, and appropriated dollars can’t be spent on food to host community gatherings. 

“[Working with Indigenous people] requires time, it requires meetings where you don’t have an agenda,” Wildcat explained. “You go meet with people, find out what they’re doing, find out what their issues are. . .and then [consider ways you] could assist.”

One of the main challenges Tribes face when it comes to federal funding opportunities, Van Cooten explained, is having the capacity to co-produce applications for funding and then administer the funds. Tribal leaders and program officers are already spread far too thin within their own communities to dedicate any more of their time applying for, let alone managing, large grants. “Yes . . . it’s a huge amount of money, but it will also take a huge amount of management. And so that capacity in the Tribe to manage that, with all the reporting, with everything that’s going to go along with that funding . . . they don’t have that.”

Many of the challenges faced by Tribal Nations are intersectional, and the approaches taken to address them must be, as well. This also rings true for challenges in weather, water, and climate science. Communication is key to both building meaningful relationships and to realizing the full potential of convergence science.

“It’s not much different than trying to put a weather forecaster in the same room with a weather researcher,” Hood told us. “. . .they talk a different language and they’ve got different metrics for what’s important, but if you give them that chance to talk, they’ll work it through. … We just need to open our minds and think about it from both points of view.”

A Change in Culture

These discussions made me consider the profound impacts that this shift in worldview could have on science and society as a whole.

Physical and biological sciences are intrinsically linked, and the need to integrate these two broad disciplines sparked the usage of the term “convergence science” in the first place. Does “western science” continue to limit itself by viewing the Earth and its systems (including biological systems) as entirely separate entities? How is that restriction reinforced by rigid academic and scientific institutions? How can we realize the full potential of convergence science (across various scientific disciplines, and across cultures and communities)?

As Keliipuleole told us, the scientific community “needs more of us to see the world the way that [Native people] see it, and not the way academia raised us to see it.”

There needs to be a culture change. There needs to be capacity building for and within Tribal Nations so that non-Indigenous scientists can engage with Indigenous science, and at universities and Tribal Colleges so students holding this Indigenous knowledge can be a part of the future of the scientific enterprise. There needs to be more of an effort to not just include but to amplify Indigenous voices in spaces like the AMS. The convergence of the western and Indigenous weather, water, and climate sciences must address the ongoing role of colonialism in modern scientific practices, and acknowledge the value of Indigenous science in and of itself.

As Van Cooten said at the start of the discussion:  

“[Science] should be inclusive to all communities, not just primarily those that have the loudest voice.”

Header photo credit: Isabella Herrera.

Recordings of all Convergence Science symposium sessions are available now to registered attendees of the AMS 104th Annual Meeting (log in and find each session through the online program). All recordings will be available to the public beginning three months after the meeting.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024 at the Baltimore Convention Center, the AMS 104th Annual Meeting explored the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions explored the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. Learn more at annual.ametsoc.org.

Our Turn: Highlights from the AMS Student Conference

Attendees at the AMS 2024 Student Conference

The 2024 AMS Student Conference, held January 27–28 in Baltimore, was a major success, with 740 attendees and 285 poster presentations. If you registered, you can view the Student Conference presentations online now! We checked in with this year’s conference chairs–Melissa Piper (SUNY Albany), Angelie Nieves Jiménez (Colorado State University), and Dillon Blount (University of Wisconsin-Milwaukee)–to hear their takeaways.

What was your favorite thing about the conference?

Melissa: My favorite moment was 2023 AMS Edward N. Lorenz Teaching Excellence Award winner Dr. Teresa Bals-Elsholz’s talk during our opening remarks on Saturday, titled, “Does Life Equal Advection?” She gave an inspiring, engaging, and relevant speech about her career path and advice for the student attendees. One quote was particularly memorable: “Do your best. Follow your passion.” It was a fantastic way to kick-start the conference! I heard a lot of students mention just how much they enjoyed it. She was incredible!

Dillon: My favorite part of the Student Conference was the opportunity to speak with students from a variety of institutions and locations! I always enjoy hearing how students have been impacted by different sessions within the conference. One of the highlights this year was the Director of the National Weather Service, Ken Graham, giving both an impromptu session on Saturday and our second keynote presentation on Sunday. Having the opportunity to engage with Ken, many students came away with a new excitement for their future. I love hearing the positive interactions that happened with all the student-speaker engagements.

Angelie: My favorite part of the conference was seeing how our hard work panned out! I enjoyed seeing students entering the Ballroom or enjoying their walk through the Career and Graduate School Fair. Hearing them speak positively about their experience after attending sessions and meeting with the professionals they look up to reassures me that our work is impactful. In addition, witnessing them present at the Student Poster Session and apply the concepts and skills they have learned during the conference was very encouraging. We heard from first-year student attendees that they’re excited to return next year. They now know how to prepare, and what to expect and focus on!

Tell us about some of your most popular sessions.

Melissa: Conversations with Professionals is always a crowd favorite. Students can interact with 10 professionals from different career paths (broadcast, private sector, academia, NWS operations, policy, etc.) in an informal Q&A format, with each professional in their own room. This year we had a surprise 11th professional: not even 15 minutes before the session began, NWS Director Ken Graham offered to join the session and connect with the students. It ended up being one of the hits of the conference!

Angelie: One of our most attended sessions was the theme session, Research, Communication, Policy. We had three speakers, Dr. Gavin Schmidt, Ms. Sophia Whittaker, and Mr. Kei Koizumi, who spoke about Climate Research, Climate Communication, and Climate Policy. This session, held in the big ballroom on Sunday morning, was accessible and applicable to all the students.

Dillon: Another popular session this year was Non-Traditional Jobs. This year, the non-traditional careers ranged from a STEM librarian to someone in educational research. This session breaks the barrier of students feeling like they must enter the big areas in our field to be successful and allows them to understand what opportunities may be available in non-traditional areas.

What were some key pieces of advice—from you or from speakersfor early-career professionals?

Angelie: [One] piece of advice is to grow your network and meet new people. The conference is what you make of it, and it’s important to attend the sessions that will benefit YOU. Prepare and navigate the conference as you see fit for your interests.

Dillon: A piece of advice that I heard throughout the weekend was that students should get involved! Whether this be at your institution, community, or within AMS, getting involved will help grow your skill sets and push you outside your comfort zone.

[Speaking of getting involved:] This was the first year that the AMS Board on Student Affairs (BOSA) existed. … We encourage any student that would like to participate in the planning of the student conference or be on other committees to join BOSA! We had a successful first year, and we cannot wait for another great year. 

Melissa: One piece of advice I heard multiple times was to find a way to stand out. Students need to get involved and gain experience outside of their atmospheric science classrooms—take programming/GIS/communication courses, get an internship, conduct some research, take on a leadership role, etc. 

We heard from many of our speakers just how impressed they were with the student attendees! The students were particularly engaged this year and asked thoughtful and relevant questions about science and career paths.

What have you learned from your time as co-chairs, and what would you tell your successors?

Dillon: One of the biggest things that I learned throughout the year as co-chair was confidence. This was the largest leadership role that we have taken on, and I am so glad to have done it beside Angelie and Melissa. As we worked together throughout the year, our confidence grew immensely. … Of course, we would not have been able to accomplish anything without the assistance from the entire Student Conference Planning Committee team. The three of us learned that one of the most important aspects of leadership is relying on an amazing team like SCPC. To our successors, my biggest piece of advice is to adapt, learn, and gain confidence as you go!

Melissa: This past year as co-chair taught me how to be flexible and the importance of communication when you are part of a team. Dillon, Angelie, and I were able to successfully navigate obstacles and implement solutions due to our flexibility and communication with each other. To our successors, my biggest piece of advice would be to trust and rely on your fellow co-chairs. The three of you are a team of equal participants going through this crazy experience together—enjoy and have fun with it!

Angelie: When you step into the role, it will feel like a big responsibility and that maybe you’re not qualified for it, but you are! You’re there for a reason, and you have a team, and everyone is rooting for you. It’s all a learning process, and AMS Staff is available to help you, and Dillon, Melissa, and I are as well. Leadership roles like this one will provide you with tons of experience and are very rewarding. Enjoy the process since it goes by very quickly!

You can view our previous post about the 2024 Student Conference here.

Be There: Estimating Wind Speeds of Tornadoes and Other Windstorms

Tornado photo

By James LaDue, NOAA/NWS Warning Decision Training Division (symposium co-chair)

Did you know that the AMS is co-branding a standard with the American Society for Civil Engineers and that you can be involved as a member? For the past several years, both organizations have signed together to develop a standard on wind speed estimation for tornadoes and other severe storms. To learn more about this standard, and the methods it’s developing, the standards committee on Wind Speed Estimation is hosting a symposium this Thursday at the AMS 104th Annual Meeting, aptly named “Estimating Wind Speeds of Tornadoes and Other Windstorms.” In this conference you will learn more about how you can be involved in the process.

Ever since the EF scale was implemented in 2007, damage surveyors found reasons for improvement. They formed a grassroots stakeholder group in 2010 and published a paper in 2013 highlighting areas needing improvement. Then after the Joplin, MO tornado of 2011, an investigation led by NIST recommended that a committee be formed to improve the EF scale. But that’s not all there was to estimating wind speeds. New methods were maturing quickly to estimate winds in severe storms: methods such as Doppler radar, tree-fall patterns left behind tornadoes, probabilistic wind speed analysis forensics, multispectral passive remote sensing, and in-situ observations. Many of these methods can also be applied to other windstorm types.

The committee on Wind Speed Estimation, begun within the ASCE in 2015, is devoted to refining all of these methods into an ANSI standard (American National Standard).  Comprised of engineers, meteorologists, architects, forest ecologists, an arborist, and an emergency manager, we are now deep in the internal balloting phase of the standard’s individual chapters. While the ASCE provides the logistical support for our committee, the AMS was added and the standard co-branded under both organizations. The process by which a standard forms is one of the most rigorous vetting processes known in the STEM fields and often can take a decade or more. We’ve been conducting internal ballots for several years, and this may last a couple more. Once the internal balloting phase is over, the standard goes to a public comment phase.  

The Wind Speed symposium is designed to let you know how and why we have this standards process, how the methods are designed in the standard, and how you can be involved, especially when the public comment period commences. We have a panel discussion at the beginning to give you a chance to engage with the committee, followed by more in-depth presentations on the methods. There are also oral and poster presentations regarding new science coming out that could provide more advances in the standard and its application. We hope to see you there! 

Featured image: Photo of tornado with dust cloud near power lines in Matador, TX, taken 21 June 2023. Image credit: James LaDue.

The Estimating Wind Speeds of Tornadoes and Other Windstorms Symposium will be held Thursday, 1 February, 2024 at the AMS 104th Annual Meeting, in Baltimore and online. Learn more about the Symposium and view the program.

AMS 2024 Session Highlight: WRN Asks “What If…?”

Graphic: WRN Asks "What If...?"

Since 2013, the AMS Symposium on Building a Weather-Ready Nation (WRN) has brought together meteorologists and other Weather, Water, and Climate Enterprise partners to discuss efforts in advancing what it means to be “Weather-Ready.” At the 104th AMS Annual Meeting, for the second year in a row, the WRN Symposium will be opening their program Monday morning at 8:30 AM ET in Baltimore with a special, interactive session: “WRN Asks: What If…?” We spoke to one of the program chairs for this Symposium, Trevor Boucher from the National Weather Service, about why this session is unique and why AMS attendees might want to check it out.

What’s so special about this session, and how did it come about?

Trevor: The design and discussion are both very different from a traditional 12-minute presentation or panel session. Weather Ready Nation Symposium was created shortly after the National Weather Service introduced the WRN Initiative as a forum to share lessons learned, successes, and best practices. After a decade of this pursuit, several recurring themes arose: How do we, the Weather Enterprise, target underserved and vulnerable populations? How do we communicate our science effectively? How do we focus on our publics/partners while also maintaining our own well-being? These provocative questions are not easily addressed through the traditional paradigm of science conferences. Last year, the 11th WRN Symposium looked to an interactive, collaborative strategy to address big societal challenges, hosting a special session called, “WRN Asks: What if…?” which embraced the concept of “transformative learning.” We shifted the focus to collective, group discussion, and critically reflecting on what we’ve all learned since 2013.

This year’s “What if…?” session not only fits into the Annual Meeting’s “Living in a Changing Environment” theme but intentionally asks the provocative “elephant in the room” questions that are difficult to have in a traditional session. We designed this session as a “reverse panel,” where moderators provide a 3-minute “state of the science” with respect to their backgrounds and propose an open-ended, “What if…?” question to the audience. Then their role shifts to moderating audience discussion for the remainder of their 20-minute slot. So you might see notable names on the agenda, but they do the least amount of talking. The audience are the true panelists, sharing their opinions, their knowledge, and their concerns about these questions.

Where did this idea come from?

Trevor: To be honest, the design inspiration and name largely came from the Marvel Cinematic Universe (MCU). There is an animated series with the same name that explores how certain character storylines would progress in alternate scenarios or timelines. What would the implications be if certain details of these characters changed? Additionally, the show Black Mirror on Netflix is another inspiration, exploring how some seemingly inevitable technological advancements like AI or cybernetic implants may change our society. Similarly, we wanted to explore “What if…?” scenarios around how our science may look if things progress, change directions, or stay the same.

One of last year’s discussion moderators, Dr. Justin Sharpe, helped us also understand how this style of discussion fits very nicely into the concept of Transformative Learning (Mezirow, 1995, 2000) and engendering critical reflection of the audience. For the chairs, this also helps us reflect on how we craft our scientific discussions each year in our program. The single, double, and triple-loop deutero learning model (below) applies to both the audience and the chairs simultaneously.

Deutero Learning: Single, Double and Triple Loop Learning where single-loop learning is primarily related to considering one’s actions — such as improving efficiency; double-loop learning questions priority-setting, such as how solutions are determined (Argyris and Schön, 1978); and triple-loop learning questions underlying values and assumptions, asking, for example, what our goals may be (Sharpe, 2018, 2021, Sweiringa and Wierdsma, 1992).

The goal for this year’s session is to inspire the following year’s call for abstracts. We will be taking notes on everything discussed from the audience and planning follow-up sessions called “What’s Next?” based on the discussion. We hope people will be excited to contribute to these discussions for years to come.

How did the first “What if…” session go last year?

Trevor: Exceptionally well. Even though it was the first time we tried this and it was the opening Monday morning session of the Annual Meeting, with a LOT of competition for the membership to choose from, we had about 40-50 folks and had no problem with participation. In fact, we had to cut discussions off for all four questions proposed. I honestly think everyone who attended spoke up at some point through the 90-minute session.

My favorite part was an idea from Doug Hilderbrand, the creator of the WRN Symposium. He asked all the students in the audience to raise their hand, and promised they would be prioritized in the discussion, since these topics are likely what they will be grappling with throughout their upcoming careers.

What’s in store for attendees this year?

Trevor: Four new moderators with four new questions! And we have become a bit more emboldened to ask even more provocative questions this year. Some of them are excellent examples of #HowtoStartaMetFight (a popular Twitter hashtag from years ago). I personally can’t wait to see where the discussion takes us. The questions include…

“What if all weather information was probabilistic?”
Dr. Sean Ernst (OU’s Institute for Public Policy Research and Analysis)

“What if there wasn’t a stigma when talking about climate change?”
Jared Rennie (Research Meteorologist – NCEI)

“What if we didn’t change anything?”
Dr. Tanya Brown-Giammanco (Director – NIST Disaster and Failure Studies)

“What if there was no ego in the weather enterprise?”
Matt Lanza (Managing Editor – Space City Weather)

I’ve been on all our coordination calls and dry runs with these folks and we have had to cut short our 90-minute meetings each time because we just can’t help but discuss these important questions — and that’s just 6-7 of us. I really think AMS attendees will find it to be an invigorating way to begin their week in Baltimore.

Read more about the session.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024, the AMS 104th Annual Meeting will explore the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions will explore the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. The Annual Meeting will be held at the Baltimore Convention Center, with online/hybrid participation options. Learn more at annual.ametsoc.org

AMS 2024 Session Highlight: Transition to Carbon-Free Energy Generation

A line of wind turbines

The AMS 2024 Presidential Panel Session “Transition to Carbon-Free Energy Generation” discusses crucial challenges to the Energy Enterprise’s transition to renewables, and the AMS community’s role in solving them. Working in the carbon-free energy sector on research and development including forecasting and resource assessment, grid integration, and weather and climate effects on generation and demand, the session’s organizers know what it’s like to be on the frontlines of climate solutions. We spoke with all four of them–NSF NCAR’s Jared A. Lee, John Zack of MESO, Inc., and Nick P. Bassill and Jeff Freedman of the University at Albany–about what to expect, and how the session ties into the 104th Annual Meeting’s key theme of “Living in a Changing Environment.” Join us for this session Thursday, 1 February at 10:45 a.m. Eastern!

What was the impetus for organizing this session?

Jared: With the theme of the 2024 AMS Annual Meeting being, “Living in a Changing Environment,” it is wonderfully appropriate to have a discussion about our in-progress transition to carbon-free energy generation, as a key component to dramatically reduce the pace of climate change. But instead of merely having this be yet another forum in which we lay out the critical need for the energy transition, we organized this session with these panelists (Debbie Lew, Justin Sharp, Alexander “Sandy” MacDonald, and Aidan Tuohy) to shine a light on some real issues, hurdles, and barriers that must be overcome before we can start adding carbon-free energy generation at the pace that would be needed to meet aggressive clean-energy goals that many governments have by 2040 or 2050. The more that the weather–water–climate community is aware of these complex issues, the more we as a community can collectively focus on developing practical, innovative, and achievable solutions to them, both in science/technology and in policy/regulations. 

Jeff: We are at an inflection point in terms of the growth of renewable energy generation, with hundreds of billions of dollars committed to funding R&D efforts. To move forward towards renewable energy generation goals requires an informed public and providing policy makers with the information and options necessary.

Required fossil fuel and renewable energy production trajectories to meet renewable energy goals. Graphic by Jeff Freedman, using data from USEIA.

Since now both energy generation and demand will be dominated by what the weather and climate are doing, it is important that we take advantage of the talent we have in our community of experts to support these efforts. We are only 16 years out from a popular target date (2040) to reach 100% renewable energy generation. That’s not very far away. Communication and the exchange of ideas regarding problems and potential solutions are key to generating public confidence in our abilities to reach these goals within these timelines without disruption to the grid or economic impacts on people’s wallets.

What are some of the barriers to carbon-free energy that the AMS community is poised to help address?

Jeff and John: From a meteorological and climatological perspective, we have pretty high confidence in establishing what the renewable energy resource is in a given area. .. We have, for the most part, developed very good forecasting tools for predicting generation out to the next day at least. But sub-seasonal (beyond a week) and seasonal forecasting for renewables remains problematic. We know that the existing transmission infrastructure needs to be upgraded, thousands of miles of new transmission needs to be built, siting and commissioning timelines need to be shortened, and we need to coordinate the retirement of fossil fuel generation and its simultaneous replacement with renewables to insure grid stability. This panel will discuss some of the potential solutions we have at hand, and what is/are the best pathway(s) forward. 

On the other hand, meeting the various state and federal targets regarding 100% renewable energy generation also implicates other unresolved issues, such as:  how will we accelerate the necessary mining, manufacturing, and construction and operation by a factor of nearly five in order to achieve these power generation goals? Not to mention how all this is affected by financing, the current patchwork of … regulatory schemes, NIMBY issues, and a constantly changing landscape of policy initiatives (depending on how the political wind is blowing–sorry for the pun!). And of course, there is the question of the “unknown unknowns!”

What will AMS 104th attendees gain from the session?

Nick: Achieving the energy transition is fundamental for the health and success of all societies globally, and indeed, may be one of the defining topics of history books for this time. With that said, the transition to carbon-free energy will not be a straight line, and many factors are important for achieving success. This session should provide an understanding of the current status of our transition, and what obstacles and key questions need to be overcome and answered, respectively, to complete our transition.

Header photo: Wind turbines operating on an oil patch in a wind farm south of Lubbock, Texas. Photo credit: Jeff Freedman.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024, the AMS 104th Annual Meeting will explore the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions will explore the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. The Annual Meeting will be held at the Baltimore Convention Center, with online/hybrid participation options. Learn more at annual.ametsoc.org