Be There: Estimating Wind Speeds of Tornadoes and Other Windstorms

Tornado photo

By James LaDue, NOAA/NWS Warning Decision Training Division (symposium co-chair)

Did you know that the AMS is co-branding a standard with the American Society for Civil Engineers and that you can be involved as a member? For the past several years, both organizations have signed together to develop a standard on wind speed estimation for tornadoes and other severe storms. To learn more about this standard, and the methods it’s developing, the standards committee on Wind Speed Estimation is hosting a symposium this Thursday at the AMS 104th Annual Meeting, aptly named “Estimating Wind Speeds of Tornadoes and Other Windstorms.” In this conference you will learn more about how you can be involved in the process.

Ever since the EF scale was implemented in 2007, damage surveyors found reasons for improvement. They formed a grassroots stakeholder group in 2010 and published a paper in 2013 highlighting areas needing improvement. Then after the Joplin, MO tornado of 2011, an investigation led by NIST recommended that a committee be formed to improve the EF scale. But that’s not all there was to estimating wind speeds. New methods were maturing quickly to estimate winds in severe storms: methods such as Doppler radar, tree-fall patterns left behind tornadoes, probabilistic wind speed analysis forensics, multispectral passive remote sensing, and in-situ observations. Many of these methods can also be applied to other windstorm types.

The committee on Wind Speed Estimation, begun within the ASCE in 2015, is devoted to refining all of these methods into an ANSI standard (American National Standard).  Comprised of engineers, meteorologists, architects, forest ecologists, an arborist, and an emergency manager, we are now deep in the internal balloting phase of the standard’s individual chapters. While the ASCE provides the logistical support for our committee, the AMS was added and the standard co-branded under both organizations. The process by which a standard forms is one of the most rigorous vetting processes known in the STEM fields and often can take a decade or more. We’ve been conducting internal ballots for several years, and this may last a couple more. Once the internal balloting phase is over, the standard goes to a public comment phase.  

The Wind Speed symposium is designed to let you know how and why we have this standards process, how the methods are designed in the standard, and how you can be involved, especially when the public comment period commences. We have a panel discussion at the beginning to give you a chance to engage with the committee, followed by more in-depth presentations on the methods. There are also oral and poster presentations regarding new science coming out that could provide more advances in the standard and its application. We hope to see you there! 

Featured image: Photo of tornado with dust cloud near power lines in Matador, TX, taken 21 June 2023. Image credit: James LaDue.

The Estimating Wind Speeds of Tornadoes and Other Windstorms Symposium will be held Thursday, 1 February, 2024 at the AMS 104th Annual Meeting, in Baltimore and online. Learn more about the Symposium and view the program.

AMS 2024 Session Highlight: WRN Asks “What If…?”

Graphic: WRN Asks "What If...?"

Since 2013, the AMS Symposium on Building a Weather-Ready Nation (WRN) has brought together meteorologists and other Weather, Water, and Climate Enterprise partners to discuss efforts in advancing what it means to be “Weather-Ready.” At the 104th AMS Annual Meeting, for the second year in a row, the WRN Symposium will be opening their program Monday morning at 8:30 AM ET in Baltimore with a special, interactive session: “WRN Asks: What If…?” We spoke to one of the program chairs for this Symposium, Trevor Boucher from the National Weather Service, about why this session is unique and why AMS attendees might want to check it out.

What’s so special about this session, and how did it come about?

Trevor: The design and discussion are both very different from a traditional 12-minute presentation or panel session. Weather Ready Nation Symposium was created shortly after the National Weather Service introduced the WRN Initiative as a forum to share lessons learned, successes, and best practices. After a decade of this pursuit, several recurring themes arose: How do we, the Weather Enterprise, target underserved and vulnerable populations? How do we communicate our science effectively? How do we focus on our publics/partners while also maintaining our own well-being? These provocative questions are not easily addressed through the traditional paradigm of science conferences. Last year, the 11th WRN Symposium looked to an interactive, collaborative strategy to address big societal challenges, hosting a special session called, “WRN Asks: What if…?” which embraced the concept of “transformative learning.” We shifted the focus to collective, group discussion, and critically reflecting on what we’ve all learned since 2013.

This year’s “What if…?” session not only fits into the Annual Meeting’s “Living in a Changing Environment” theme but intentionally asks the provocative “elephant in the room” questions that are difficult to have in a traditional session. We designed this session as a “reverse panel,” where moderators provide a 3-minute “state of the science” with respect to their backgrounds and propose an open-ended, “What if…?” question to the audience. Then their role shifts to moderating audience discussion for the remainder of their 20-minute slot. So you might see notable names on the agenda, but they do the least amount of talking. The audience are the true panelists, sharing their opinions, their knowledge, and their concerns about these questions.

Where did this idea come from?

Trevor: To be honest, the design inspiration and name largely came from the Marvel Cinematic Universe (MCU). There is an animated series with the same name that explores how certain character storylines would progress in alternate scenarios or timelines. What would the implications be if certain details of these characters changed? Additionally, the show Black Mirror on Netflix is another inspiration, exploring how some seemingly inevitable technological advancements like AI or cybernetic implants may change our society. Similarly, we wanted to explore “What if…?” scenarios around how our science may look if things progress, change directions, or stay the same.

One of last year’s discussion moderators, Dr. Justin Sharpe, helped us also understand how this style of discussion fits very nicely into the concept of Transformative Learning (Mezirow, 1995, 2000) and engendering critical reflection of the audience. For the chairs, this also helps us reflect on how we craft our scientific discussions each year in our program. The single, double, and triple-loop deutero learning model (below) applies to both the audience and the chairs simultaneously.

Deutero Learning: Single, Double and Triple Loop Learning where single-loop learning is primarily related to considering one’s actions — such as improving efficiency; double-loop learning questions priority-setting, such as how solutions are determined (Argyris and Schön, 1978); and triple-loop learning questions underlying values and assumptions, asking, for example, what our goals may be (Sharpe, 2018, 2021, Sweiringa and Wierdsma, 1992).

The goal for this year’s session is to inspire the following year’s call for abstracts. We will be taking notes on everything discussed from the audience and planning follow-up sessions called “What’s Next?” based on the discussion. We hope people will be excited to contribute to these discussions for years to come.

How did the first “What if…” session go last year?

Trevor: Exceptionally well. Even though it was the first time we tried this and it was the opening Monday morning session of the Annual Meeting, with a LOT of competition for the membership to choose from, we had about 40-50 folks and had no problem with participation. In fact, we had to cut discussions off for all four questions proposed. I honestly think everyone who attended spoke up at some point through the 90-minute session.

My favorite part was an idea from Doug Hilderbrand, the creator of the WRN Symposium. He asked all the students in the audience to raise their hand, and promised they would be prioritized in the discussion, since these topics are likely what they will be grappling with throughout their upcoming careers.

What’s in store for attendees this year?

Trevor: Four new moderators with four new questions! And we have become a bit more emboldened to ask even more provocative questions this year. Some of them are excellent examples of #HowtoStartaMetFight (a popular Twitter hashtag from years ago). I personally can’t wait to see where the discussion takes us. The questions include…

“What if all weather information was probabilistic?”
Dr. Sean Ernst (OU’s Institute for Public Policy Research and Analysis)

“What if there wasn’t a stigma when talking about climate change?”
Jared Rennie (Research Meteorologist – NCEI)

“What if we didn’t change anything?”
Dr. Tanya Brown-Giammanco (Director – NIST Disaster and Failure Studies)

“What if there was no ego in the weather enterprise?”
Matt Lanza (Managing Editor – Space City Weather)

I’ve been on all our coordination calls and dry runs with these folks and we have had to cut short our 90-minute meetings each time because we just can’t help but discuss these important questions — and that’s just 6-7 of us. I really think AMS attendees will find it to be an invigorating way to begin their week in Baltimore.

Read more about the session.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024, the AMS 104th Annual Meeting will explore the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions will explore the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. The Annual Meeting will be held at the Baltimore Convention Center, with online/hybrid participation options. Learn more at annual.ametsoc.org

AMS 2024 Session Highlight: Transition to Carbon-Free Energy Generation

A line of wind turbines

The AMS 2024 Presidential Panel Session “Transition to Carbon-Free Energy Generation” discusses crucial challenges to the Energy Enterprise’s transition to renewables, and the AMS community’s role in solving them. Working in the carbon-free energy sector on research and development including forecasting and resource assessment, grid integration, and weather and climate effects on generation and demand, the session’s organizers know what it’s like to be on the frontlines of climate solutions. We spoke with all four of them–NSF NCAR’s Jared A. Lee, John Zack of MESO, Inc., and Nick P. Bassill and Jeff Freedman of the University at Albany–about what to expect, and how the session ties into the 104th Annual Meeting’s key theme of “Living in a Changing Environment.” Join us for this session Thursday, 1 February at 10:45 a.m. Eastern!

What was the impetus for organizing this session?

Jared: With the theme of the 2024 AMS Annual Meeting being, “Living in a Changing Environment,” it is wonderfully appropriate to have a discussion about our in-progress transition to carbon-free energy generation, as a key component to dramatically reduce the pace of climate change. But instead of merely having this be yet another forum in which we lay out the critical need for the energy transition, we organized this session with these panelists (Debbie Lew, Justin Sharp, Alexander “Sandy” MacDonald, and Aidan Tuohy) to shine a light on some real issues, hurdles, and barriers that must be overcome before we can start adding carbon-free energy generation at the pace that would be needed to meet aggressive clean-energy goals that many governments have by 2040 or 2050. The more that the weather–water–climate community is aware of these complex issues, the more we as a community can collectively focus on developing practical, innovative, and achievable solutions to them, both in science/technology and in policy/regulations. 

Jeff: We are at an inflection point in terms of the growth of renewable energy generation, with hundreds of billions of dollars committed to funding R&D efforts. To move forward towards renewable energy generation goals requires an informed public and providing policy makers with the information and options necessary.

Required fossil fuel and renewable energy production trajectories to meet renewable energy goals. Graphic by Jeff Freedman, using data from USEIA.

Since now both energy generation and demand will be dominated by what the weather and climate are doing, it is important that we take advantage of the talent we have in our community of experts to support these efforts. We are only 16 years out from a popular target date (2040) to reach 100% renewable energy generation. That’s not very far away. Communication and the exchange of ideas regarding problems and potential solutions are key to generating public confidence in our abilities to reach these goals within these timelines without disruption to the grid or economic impacts on people’s wallets.

What are some of the barriers to carbon-free energy that the AMS community is poised to help address?

Jeff and John: From a meteorological and climatological perspective, we have pretty high confidence in establishing what the renewable energy resource is in a given area. .. We have, for the most part, developed very good forecasting tools for predicting generation out to the next day at least. But sub-seasonal (beyond a week) and seasonal forecasting for renewables remains problematic. We know that the existing transmission infrastructure needs to be upgraded, thousands of miles of new transmission needs to be built, siting and commissioning timelines need to be shortened, and we need to coordinate the retirement of fossil fuel generation and its simultaneous replacement with renewables to insure grid stability. This panel will discuss some of the potential solutions we have at hand, and what is/are the best pathway(s) forward. 

On the other hand, meeting the various state and federal targets regarding 100% renewable energy generation also implicates other unresolved issues, such as:  how will we accelerate the necessary mining, manufacturing, and construction and operation by a factor of nearly five in order to achieve these power generation goals? Not to mention how all this is affected by financing, the current patchwork of … regulatory schemes, NIMBY issues, and a constantly changing landscape of policy initiatives (depending on how the political wind is blowing–sorry for the pun!). And of course, there is the question of the “unknown unknowns!”

What will AMS 104th attendees gain from the session?

Nick: Achieving the energy transition is fundamental for the health and success of all societies globally, and indeed, may be one of the defining topics of history books for this time. With that said, the transition to carbon-free energy will not be a straight line, and many factors are important for achieving success. This session should provide an understanding of the current status of our transition, and what obstacles and key questions need to be overcome and answered, respectively, to complete our transition.

Header photo: Wind turbines operating on an oil patch in a wind farm south of Lubbock, Texas. Photo credit: Jeff Freedman.

About the AMS 104th Annual Meeting

The American Meteorological Society’s Annual Meeting brings together thousands of weather, water, and climate scientists, professionals, and students from across the United States and the world. Taking place 28 January to 1 February, 2024, the AMS 104th Annual Meeting will explore the latest scientific and professional advances in areas from renewable energy to space weather, weather and climate extremes, environmental health, and more. In addition, cross-cutting interdisciplinary sessions will explore the theme of Living in a Changing Environment, especially the role of the weather, water, and climate enterprise in helping improve society’s response to climate and environmental change. The Annual Meeting will be held at the Baltimore Convention Center, with online/hybrid participation options. Learn more at annual.ametsoc.org

Be There: The AMS Student Conference

Photo of Melissa Piper, Angelie Nieves-Jimenez, and Dillon Blount seated next to each other.

The 23rd Annual AMS Student Conference, which takes place 27–28 January (immediately prior to the AMS 104th Annual Meeting in Baltimore), spotlights research by graduate and undergraduate students in the atmospheric and allied sciences, as well as offering networking and other career opportunities, presentations from leaders in the field, and the chance to hone important skills. We spoke with Conference Co-Chairs (pictured above, left to right) Melissa Piper of SUNY Albany, Angelie Nieves Jiménez of Colorado State University, and Dillon Blount of the University of Wisconsin-Milwaukee about what students will gain from the conference experience.

What’s behind this year’s Student Conference theme?

Melissa: This year’s Student Conference theme is “It’s Our Turn: Tackling Our Changing Environment.” We wanted to adapt the Annual Meeting theme (“Living in a Changing Environment”) to align with the rapid, multi-faceted changes students in the atmospheric sciences currently face. As students, our personal environments are constantly changing: we are going to school, moving for internships, and facing the unknowns of post-student life. On the flipside, our generation is entering adulthood in the face of a climate crisis. As we enter the workforce, we will be faced with developing solutions, conducting research, and adapting with our local communities to climate change. We hope that this year’s Student Conference can help prepare students to tackle these complex changes in all aspects of our lives.

What’s distinctive about the AMS 2024 Student Conference, and who should attend?

Melissa: The Student Conference is planned solely for students, by students from a variety of universities, backgrounds, and interests—so the conference is relevant to current students in the atmospheric sciences. There are professional development and networking sessions alongside research presentations constructed with students in mind (so no presentations that require you to have a PhD to understand!). Even better, the Student Conference Poster Session provides all students the opportunity to present their research at a reduced cost compared to the AMS Annual Meeting. A separate conference [also] gives students an opportunity to meet their peers from all around the world. This is especially important because we will all be each other’s colleagues in a few years!

While most tend to think of the Student Conference as being tailored to undergraduate students, we are making conscious strides in ensuring our conference is relevant to graduate students as well. We have sessions geared towards professional development, discovering lesser-known sub-fields in the atmospheric sciences, networking, jumping out of academia, and more!

Angelie: Additionally, the Career Fair on Saturday and Sunday nights is focused primarily providing students with information about internships and graduate school opportunities! We partner up with the Board of Early Career Professionals to bring professional development sessions for all stages.

The Student Conference takes place prior to the bigger AMS Annual Meeting, which can help students loosen up and prepare for the rest of the week and know what to expect. It also can serve as a trial of whether they wish to pursue the atmospheric sciences further.

Dillon: A conference geared towards students is a great way to get the students involved in the overall community of the American Meteorological Society. As students, we can often feel overwhelmed by the larger Annual Meeting and how to build a network throughout the week. This conference provides a great toolbox to use throughout the week to network and build community. This inclusion of students, and the resources gained at the Student Conference, allows students to help shape the future of the AMS.

What events at the conference are you most excited about?

Angelie: I am excited about the new Community Based Science Session which is inspired by what was previously known as the BRAID (Board on Representation, Accessibility, Inclusion, and Diversity) Session. This year we are focusing on presenting and highlighting the actions taken behind some of the amazing community initiatives.

Dillon: I am most excited about the Sunday keynote speakers! It is not often that students get the opportunity to hear from the top two leaders of the National Weather Service. Ken Graham and Michelle Mainelli’s leadership provides a great insight into what the future of that career field looks like. They are wonderful people, and I cannot wait to hear what they have to share!

Melissa: One of my favorite parts of the Student Conference is the Conversations with Professionals session. This year, we have an incredible lineup of 10 professionals from the private, public, and policy sectors for our students to have informal conversations with—including meteorologist-in-charge of the National Weather Service in Baltimore Mr. James Lee, director of the AMS Policy Program Dr. Paul Higgins, and broadcast meteorologist for WBAL-TV in Baltimore Ms. Ava Marie. It’s a fantastic networking experience!

In Short: Why Attend the AMS 2024 Student Conference?

AngelieDillonMelissa
“The 2023 AMS Student Conference provides a space for students to expand their network, advertise their work and build their confidence as they gain experience in the workforce.”“The student conference provides students the opportunity to explore different careers and opportunities after school whether this includes graduate school or a job. There is a vast amount of experience and advice provided at this conference, from a variety of perspectives from early to late career professionals.”“The Student Conference goes beyond research presentations and the exploration of different careers → it gives you the opportunity to build your toolbox on skills like networking, having a healthy mindset, and technical skills.”

About the AMS Student Conference

The 23rd Annual AMS Student Conference will take place 27-28 January 2024, the weekend leading into the main AMS 104th Annual Meeting in Baltimore. The Student Conference provides opportunities for undergraduate and graduate students to broaden their horizons, cultivate new skills, hear from leaders in the weather, water, and climate enterprise, and network with fellow students and professionals. Attendees also have the opportunity to participate in workshops to help with their professional development, attend the Graduate School and Career Fair to help with planning the next step in their career, and gain valuable experience by presenting their work at the Student Conference Poster Session. Students can attend the conference in person in Baltimore as well as virtually. Learn more and view the program.

Be There: The Kuo-Nan Liou Symposium

Highlighting Key Sessions at AMS 2024

The Kuo-Nan Liou Symposium at the 104th AMS Annual Meeting will celebrate Dr. Kuo-Nan Liou (1943-2021), a giant in the field of atmospheric physics who made crucial contributions in the areas of atmospheric radiation, remote sensing, and the greenhouse impacts of clouds and aerosols. Liou (pictured at right, image courtesy of Penny Jennings), received numerous accolades during his career, including the AMS’s Carl-Gustaf Rossby Research Medal and Charney Award, and he was part of the Intergovernmental Panel on Climate Change team who received the Nobel Peace Price in 2007.

We asked Symposium Co-Chair Ping Yang, University Distinguished Professor and David Bullock Harris Chair in Geosciences at Texas A&M University, about the Symposium and Dr. Liou’s impact. Here are some of his answers:

Dr. Kuo-Nan Liou (image credit: Penny Jennings)

Why are the areas of Dr. Liou’s research so important to understand right now?

As one of the most accomplished atmospheric scientists in the world, Dr. Liou made seminal contributions to atmospheric and climate sciences in many areas, particularly in atmospheric radiation. His radiative transfer model has been widely used in weather and climate models and satellite remote sensing implementations, and thus plays a central role in determining the radiation budget of the earth-atmosphere system and cloud-aerosol-radiation interactions and feedback in a changing world.

Radiative transfer is important because almost all the energy that drives the Earth’s atmosphere and ocean currents originates from the sun. Therefore, the climate of the Earth-atmosphere system is mainly determined by the radiation balance at the top of the atmosphere and the surface since radiation is the only mechanism by which the Earth-atmosphere system gains or loses energy.

What can attendees expect from the Symposium?

This symposium honors the legacy of Dr. Kuo-Nan Liou by bringing together researchers to share knowledge, foster collaborations and address current challenges in the fields where Dr. Kuo-Nan Liou left a lasting impact. Attendees, both in-person and virtual, can benefit from gaining insights into the latest research and advancements in these areas. Session topics include “Interactions Among Climate, Radiation, Clouds, Aerosols, and Surface”, “Radiative Transfer Theory & Spectroscopy,” “Remote Sensing of Clouds, Aerosols, and Surface Properties,” and “Light Scattering and Applications.” The Symposium will provide a platform for networking and engaging with experts and a forum for disseminating cutting-edge research findings.

The Symposium will delve into the forefront issues within these research areas. Noteworthy presentation topics include the lidar remote sensing of snow depth and density, sub-millimeter-wave remote sensing of ice clouds, Tibetan Plateau snowpack loss and its connection to extreme events, and more.

The first session aligns with the central focus of the 2024 AMS Annual Meeting, “Living in a Changing Environment.” It features invited speakers Drs. Ruby Leung, Dennis Hartmann, V. Ramaswamy, Zhanqing Li, Jonathan Jiang, and Yongkang Xue. 

How did Dr. Liou influence the fields of atmospheric and climate science?

Dr. Liou’s work left a profound mark on the atmospheric and climate sciences due to his seminal contributions to radiative transfer, atmospheric optics, cloud-aerosol-radiation-climate interactions, and remote sensing. He was a pioneering researcher who demonstrated that atmospheric radiation should no longer be consigned to the fringes of meteorology, but instead should take a central place in the new world of climate science.

His book, “An Introduction to Atmospheric Radiation,” now in its second edition (with the first edition published in 1980), has been an invaluable resource for students and researchers around the world studying atmospheric radiation and its applications in climate science and remote sensing. Accepting the Rossby Medal in 2018, Prof. Liou talked about how his own early-career exposure to books like Chandrasekhar’s “Radiative Transfer” and Born & Wolf’s “Principles of Optics” spurred his innovations. For example, his simplified solutions for understanding solar and heat energy transfer problems, and his application of geometric optics to understand the scattering, absorption, and polarization properties of soot aerosols and irregular ice crystals.

He also humbly thanked his graduate students at the University of Utah and UCLA, saying, “They deserve to share, in equal measure, any recognition I have received, including this great honor from AMS.” We, the organizers of the Symposium, in turn are grateful to Dr. Liou. Along with his exceptional impact on the atmospheric sciences, he was a true role model as a leader and educator.

Kuo-Nan Liou receiving the Carl-Gustaf Rossby Research Medal at the 2018 AMS Annual Meeting and celebrating with his family, students, and colleagues. Photos provided by Liou Symposium co-chairs.

The Kuo-Nan Liou Symposium will be held Tuesday, 30 January, 2024 at the AMS 104th Annual Meeting, in Baltimore and online; it will feature invited presentations and a poster session, along with a special luncheon. Learn more about the Symposium and view the program.

Be There: The Daniel Keyser Symposium

Highlighting Key Sessions at AMS 2024

The Daniel Keyser Symposium at the 104th AMS Annual Meeting will advance the science of synoptic-dynamic meteorology and celebrate the contributions of Prof. Daniel Keyser, a multifaceted researcher and educator. Keyser (pictured at right), a Fellow of the AMS and recipient of the AMS Meisinger Award and Lorenz Teaching Excellence Award, is well-known for his seminal work on cold-front updrafts and for co-originating the Shapiro–Keyser cyclone model.

We spoke with Symposium Co-Chair David Schultz, Professor of Synoptic Meteorology at the University of Manchester, about why the AMS community is celebrating synoptic-dynamic meteorology and Daniel Keyser’s contributions to the field. Here are a few excerpts:

Daniel Keyser

How has Daniel Keyser influenced the field of meteorology?

Dan is one of those people who don’t get the attention they deserve. He’s worked on so many things and worked with so many people. Yet he’s done so in a very humble way.

A lot of what we know about cold fronts is from the work that Dan did. Dan’s PhD was about understanding the circulation of cold fronts and the dynamics of that interaction with the boundary layer in driving the updraft air at the leading edge of the cold front. Later, he developed the concepts of vector frontogenesis and partitioning Q/F vectors into front-normal or front-parallel flows, which help us diagnose the frontal-scale circulations and the larger synoptic-scale circulations in which they are embedded. Also, the concept of the Shapiro–Keyser cyclone model is now commonly taught in meteorology programs. The region of high winds called the sting jet, which is common in North Atlantic cyclones that may impact western Europe, only occurs in Shapiro–Keyser cyclones. 

Not only has Dan been a great researcher, but he’s a great teacher at all levels, undergraduate and graduate. Much of my teaching philosophy comes from my time at Albany, from Dan and Lance Bosart. All four of us on the program committee, and so many others, have been influenced by Dan’s education over the years.

The Shapiro–Keyser Cyclone Model, image taken from Shapiro and Keyser (1990).

Give us a few highlights of the Symposium’s program.

The first session gives a perspective on Dan’s career, including Dan’s work on wildfires and how he’s influenced others. Wildfire enthusiasts will want to check that out. The second session is called “Jets and Cyclones,” the meat-and-potatoes of Dan’s work. There will be a number of talks about various aspects of fronts, on the frontal scale but also up to the planetary scale, and how things like predictability and planetary-scale circulations in different climates affect the relationship between things like precipitation and fronts. Then, the third session will feature prominent mid- and senior-career-level people speaking about fronts and frontal circulation, zooming in on the smaller scale.

Session four is about fronts and precipitation, and it closes with Dan’s own presentation. Sub-seasonal effects, precipitation extremes, convection—for anyone interested in severe, hazardous, or extreme weather (for example, the flooding in California), that will be an important talk.

Why is a symposium on synoptic-dynamic meteorology so important right now?

Synoptic-dynamic meteorology is where meteorological research started, and weather forecasts are better because of our research. Now more than ever, people need to understand the dynamics of extreme weather and take a more interdisciplinary approach to weather systems. There’s a lot of hazardous weather out there, losses from weather events are increasing, and of course many people will experience climate change through its impacts on certain weather events. So synoptic-dynamic meteorology still lies at the heart of the problems that humanity faces and learning how to mitigate them. Yet, despite its importance, we’re at this point where we synoptic-dynamic meteorologists have to fight for recognition and institutional support.

That’s one of the things that Dan really wanted to emphasize in his talk at the end of the day: “A Personal Perspective on the Continuing Importance and Value of Doctoral Education in Synoptic-Dynamic Meteorology.” His talk will help people outside synoptic-dynamic meteorology see how these talks all day during the Symposium relate to the importance of synoptic-dynamic meteorology and to societal resilience in general.

The Daniel Keyser Symposium will be held Monday, January 29, 2024 at the AMS 104th Annual Meeting, in Baltimore and online; it will feature invited presentations, a poster session, and a dinner with Keyser as the guest of honor. Learn more about the Symposium and view the program.

Irrigation and Storms in the Inner Mongolian Desert

Images from the DECODE project. Clockwise from top left: Microwave radiometer, wind LIDAR, researcher launching rawinsonde, eddy flux observation system, clouds forming at the boundary line, radar image of convective cells initiating along the boundary, photo of supercell storm growing from the boundary line. Photos courtesy of DECODE team.

A Research Spotlight from 32WAF/20Meso/28NWP

An irrigation oasis in Inner Mongolia, China, is providing unusual, real-world evidence about the effects of sharp vegetation contrasts on local and regional weather. Several presentations at the 32nd Conference on Weather Analysis and Forecasting, the 20th Conference on Mesoscale Processes, and the 28th Conference on Numerical Weather Prediction (32WAF/20Meso/28NWP) discussed findings from the 2022 DEsert-oasis COnvergence line and Deep convection Experiment (DECODE).

In Bayannur City, on the north side of a bend in the Yellow River, sits one of China’s largest irrigated areas: the 2,200-year-old, 769,333 hectare Hetao Irrigation District (HID), which was recognized as a World Heritage Irrigation Structure in 2019. All around this irrigation oasis is arid and semi-arid land, including the Kubuqi Desert to the south. We know that borders between land and water influence weather patterns, but there has been less real-world evidence gathered about the effects of differences in vegetation—and you can’t find a sharper divide than this one.

Image showing treeless mountains and sparsely vegetated foothills next to flat land. In the center of the photo is a dark green area of vegetation which contrasts sharply with the otherwise brown/tan landscape. A road runs to one edge of the green area. At the very right of the image, in the middle distance, is a large, wide building with a bright blue roof.
Above: Aerial view showing part of the Hetao Irrigation District and its sharp contrast with the surrounding desert areas. Video still courtesy of Yijing Liu. Below: Diagram of the juxtaposition between the boundary and its associated convective initiation (CI) and downstream propagation relative to surrounding terrain in Hetao Irrigation District. Image courtesy of Zhiyong Meng.

When cooler air from the Irrigation District meets warm wind from the desert, an atmospheric boundary line can sometimes be seen on radar. During the summer, convection often initiates at this boundary—sometimes leading to impressive storms that can travel long distances. DECODE researchers used a comprehensive set of observations—from radar and satellite to balloon sondes to flyovers—to examine this phenomenon. Their mission was to understand how the boundary forms and under what circumstances it might create unusual weather.

Different views of the boundary. Images courtesy of Zhiyong Meng.

On average, in the three months of summer each year from 2012 to 2016, 60 days produced a boundary, and 44 percent of those boundaries resulted in convective initiation (CI), noted Zhiyong Meng, of Peking University, in her July 20 presentation during Session 16 of 32WAF/20Meso/28NWP. The DECODE field experiment itself lasted 36 days in 2022, from 5 July to 9 August. With two field stations located on the oasis side, and four on the desert side, the teams were able to observe 23 boundaries and 11 occurrences of deep convection initiation, and even one case of a tornado.

Video still with green agricultural fiels and dark storm clouds in the background. A tornado funnel cloud is seen in the right side of the image. The DECODE project logo appears at the top left.
A tornado documented by the DECODE research team. It was generated by a thunderstorm formed at the boundary line. Video still courtesy of Yijing Liu.
Video still shows a bright bolt of lightning in the far left of the image. In the bottom right, a laser wind LIDAR device sits on a rooftop, pointing in the direction of the storm.
Lightning strike during the DECODE experiment. Video still courtesy of Yijing Liu.

Yipeng Huang, of Xiamen Key Laboratory of Straits Meteorology, outlined the most common conditions leading to a boundary/CI in a 21 July presentation. The researchers found that a boundary is most likely on warm summer days, when synoptic forcing is relatively weak, with dominant southerly winds opposing the oasis breeze, and a temperature over the desert that is apparently warmer than over the oasis. They found that along the boundary line between the two masses of air, convection initiation may occur when enough moist air advects north at the west edge of the subtropical high, moves out over the dry desert, and converges with a cool oasis breeze in an environment with large enough instability. Hongjun Liu of Peking University presented the mechanism for this process in a case study on 21 July.

Diagram of boundary formation and convection initiation near Hetao Irrigation District. Image courtesy of Zhiyong Meng.

Meng described “The most beautiful case, on July 29 [2022, when] the boundary produced a CI and the storm became very strong; it actually produced five-millimeter hail in the eastern part of the oasis.” They were also able to observe another storm as it split into two separate supercells. On July 25, a preexisting storm that passed over the area dissipated somewhat, likely due to sinking air over the oasis, then re-initiated strongly once it reached the boundary/convergence line over the desert. On occasion, the boundary would extend over the oasis and strongly increase the precipitation there.

Radar and photograph images of a large thunderstorm forming along the boundary line in the Kubuqi Desert on 29 July, 2022.

In the presentation immediately following Meng’s, Murong Zhang of Xiamen University noted that the team’s real-time forecasts were able to predict the formation of the boundary line in 21 out of 23 cases, although predicting convection initiation was more difficult. They were only able to predict 6 out of 11 CIs, as the numerical model tended to over-predict surface temperature, but under-predict moisture. The observations obtained from DECODE have been used to effectively improve the surface heat flux over the irrigated area, as shown in a presentation by Xuelei Wang of Peking University on the first day of the conference. You can see more from the DECODE team in this video created as part of the project:

With researchers from many institutions* participating, DECODE is an epic undertaking to study a unique natural phenomenon. As field research pioneer Prof. Edward Zipser of Utah University noted after Zhang’s talk, it’s “a program that we want to hear more about.”     

Group photo of the DECODE onsite team at one of the desert stations. Photo courtesy of Yijing Liu.

*DECODE participating organizations include Peking University, Inner Mongolia Meteorological Bureau, Nanjing University of Information Science and Technology, Xiamen Key Laboratory of Straits Meteorology, Xiamen University, Nanjing University, National Satellite Meteorological Center, Foshan Meteorological Bureau, and Jiangxi Storm Hunting Videos Culture Co., Ltd.

Featured image collage: Images from the DECODE project. Clockwise from top left: Microwave radiometer, wind LIDAR, researcher launching rawinsonde, eddy flux observation system, clouds forming at the boundary line, radar image of convective cells initiating along the boundary, photo of supercell storm growing from the boundary line. Photos courtesy of DECODE team.

About 32WAF/20Meso/28NWP

Predicting and understanding storms and other weather events is a complex business with real-world impacts. The American Meteorological Society’s 32nd Conference on Weather Analysis and Forecasting/28th Conference on Numerical Weather Prediction/20th Conference on Mesoscale Processes brought researchers, forecasters, emergency managers, and more together to learn about and discuss the latest scientific developments. The conferences took place in Madison, WI, and online 17–21 July, 2023. Recordings of the sessions are available here.

Building Community to Solve the Big Challenges in Weather, Water, and Climate

Some thoughts following the AMS Summer Community Meeting

By Isabella Herrera, AMS Policy Program

How can the weather, water, and climate enterprise better collect and use socioeconomic data to keep vulnerable populations safe from environmental hazards? What are the challenges of establishing a national network to monitor the planetary boundary layer? How are we dealing with radio frequency interference that hampers weather monitoring and forecasting? These questions can be answered only through collaborative efforts across the weather, water, and climate enterprise. One of the most important roles of the American Meteorological Society is to convene meetings where WWC professionals can delve into these vital topics.

The AMS Summer Community Meeting is a perfect example of that convening ability in action. Professionals from the private, public, and academic sectors come together, both in person and virtually, to share their visions for the future of the weather, water, and climate enterprise(s). 

Having now worked for the American Meteorological Society for just over a year, I was very excited to have the opportunity to attend the AMS Summer Community Meeting for the first time in Minneapolis this August. At this two-day conference, attendees immersed themselves in discussions about current challenges, opportunities, and efforts throughout the AMS community and related fields.

A conduit for collaboration

As an in-person attendee this year, one thing that struck me was how the Summer Community Meeting served as a conduit for conversation. Information and ideas flowed easily between the various presenters, panelists, and the audience. For example, sessions focused on commercial radar services and NOAA research allowed the public and private sectors to share their perspectives. They presented pressing issues, opportunities for potential collaborations, and the work currently being done across the enterprise.

Summer Community Meeting attendees listen to a discussion of NOAA’s Next Generation Weather Radar (NEXRAD) system.

Some of the topics covered at this meeting included: updates on national policy; the NOAA Precipitation Prediction Grand Challenge; pressing issues in radar and forecasting, such as moving the national radar network beyond the WSR-88Ds; and the operations of the National Severe Storms Laboratory. My colleagues from AMS discussed the new and ongoing initiatives of the AMS Policy Program, such as: enhancing the effectiveness and potential of the weather enterprise over the next decade and beyond (see page 823 of the October issue of BAMS), the 2024 Summer Policy Colloquium, and the role of the AMS in enabling the future of both the climate and ocean enterprises.

Hurricane prediction gets personal

I was fascinated by some of the discussions about extreme weather and the increasing frequency of Billion-Dollar Weather and Climate Disasters. Attendees from the National Weather Service highlighted the widespread efforts to improve our forecasting and modeling of extreme weather events. 

Discussions about major tropical storms particularly resonated for me, especially with Hurricane Idalia making landfall in Florida during the Meeting. I was born, raised, and currently reside in the Sunshine State, so I’m well-attuned to hurricane season and planning for impending storms. Hurricane Idalia is a perfect example of how advancements in hurricane models and forecasting have allowed meteorologists and WWC professionals to more accurately predict and communicate extreme weather hazards (such as the rapid intensification of the storm right before it made landfall), thus saving lives. I was able to witness some of this behind-the-scenes work. 

Compared with being at home refreshing the National Hurricane Center’s webpage and listening to advisories on the local news, as I had during previous hurricane seasons, this was an invaluable experience.

Reunions

Photo: Larry Hopper and Isabella Herrera at the Summer Community Meeting
Isabella Herrera and Larry Hopper at the AMS 2023 Summer Community Meeting. Photo: Isabella Herrera.

I was delighted to see fellow AMS Summer Policy Colloquium alum Larry Hopper presenting on current and emerging radar technologies as part of a Panel Discussion on Weather Radar Research. Reconnecting with Colloquium alumni is something that I’m looking forward to at the AMS Annual Meeting in January, and although the dates have yet to be announced for next year’s Summer Community Meeting, I’m already excited to hear about the initiatives across the WWC enterprise for 2024.

I saw so many others reunite with their colleagues, too (from graduate school, from years of working in the field together, or from previous AMS meetings). It reminded me that, in addition to creating connections, collaborations, and conversation across the weather, water, and climate enterprise, the AMS has another integral part to play in this space: building community.

“Once in a Generation”: The 2022 Buffalo Blizzard

Truck in snowdrift

A Research Spotlight from 32WAF/28NWP/20Meso

On 23 December, 2022, David Zaff of the National Weather Service’s Buffalo office walked out into a blank white world of howling wind. He headed to his car to get supplies, knowing there was no way to get home. He and his coworkers were trapped at the office, in the middle of one of the most deadly and disastrous blizzards Buffalo has ever seen.

Video by David Zaff, showing whiteout conditions outside NWS Buffalo office, December 23, 2022.

At the height of the 2022 holiday travel season, the four-day blizzard and lake-effect snow event knocked out power for more than 100,000 people, paralyzed emergency services and holiday travel, and left at least 47 dead. New York Governor Kathy Hochul described it as “the most devastating storm in Buffalo’s long, storied history.” Yet days earlier, Zaff and colleagues encountered skepticism from the public as they worked to warn the region.

Presenting at the J3 Joint Session at the 32nd Conference on Weather Analysis and Forecasting, the 20th Conference on Mesoscale Processes, and the 28th Conference on Numerical Weather Prediction, Zaff talked about the disaster and how the NWS countered accusations of hyperbole to get the word out.

Sounding the Alarm

The December 2022 snow was shocking, but not surprising. The pattern was easy enough to recognize, even 7–10 days earlier: a large high-pressure ridge forming over the western U.S., with a major trough in the east. “We knew something big was coming,” said Zaff. Five days before the storm, even low-resolution models suggested a major event. Four days ahead, the NWS started ringing the alarm bell. “We started saying, ‘A powerful storm will impact the region heading into the holiday weekend.’”

Three days out, the NWS issued an unusually emphatic Area Forecast Discussion (AFD):

“Some of the parameters of this intense storm are forecast to be climatologically ‘off the charts’ … One could certainly describe this storm system as a once in a generation type of event.”

NWS Lead Forecaster Robert Hamilton, Tuesday, December 20, 2022

That caused a stir, but many on social media dismissed it as hype. “People started saying, ‘There goes the weather service again,’” says Zaff.

He tried to find a way to show the science graphically, highlighting the forecast as “‘outside’ the climatology” for the time of year.

The graphic and its accompanying description got attention. By then, NWS Buffalo was communicating in earnest, including on social media. A tweet with a text-filled screengrab of the Winter Weather Message received 485,000 views. “A picture is worth a thousand words,” Zaff said, “except when people actually read the words, and see how impressive this event might be.”

Left: Graphic showing forecast surface pressure for Friday, December 23, 2022, with shading showing the relative frequency of the forecast MSLP values in the Buffalo region at that time of year. Source: David Zaff.

Surviving the Storm

Before noon on 23 December, visibility dropped to near zero, and it remained that way until around midnight on 25 December. 500 Millibar heights were “extraordinary” as the pressure trough moved into the Ohio Valley, and surface-level pressure was similarly unbelievable. A top wind speed of 79 mph was measured in downtown Buffalo at 10:10 a.m. on the 23rd, and winds in the 60–70 mph range lasted for 12 hours. “[It was] just an incredible bomb cyclone,” Zaff said. “An incredible storm.”

Zaff and some colleagues slept at the office; others attempted to drive in whiteout conditions using GPS alone, while some got stuck in drifts near the office and had to leave their cars to hike the rest of the way. Meanwhile, firefighters and airport employees worked to rescue motorists trapped nearby.

On December 24, the City of Buffalo issued “the scariest tweet I’ve ever seen,” said Zaff. The tweet stated that there were “no emergency services available” for Buffalo and numerous other towns.

“We knew by this time that there were fatalities occurring,” Zaff said. “And it just got worse and worse.”

Blizzard conditions lasted a full 37 hours–and lake effect snow wouldn’t stop for another two days. Three power substations shut down, frozen solid. Hundreds of power poles fell, and a significant percentage of locals were without power during the storm’s peak (some for days afterwards).

The 47 fatalities included people stranded outside, others who died from hypothermia in their homes, and some deaths due to delayed EMS response, according to Erie County. Hundreds of motorists were stranded on roadways during the storm. The Buffalo Niagara International Airport, with a proud legacy of operating under even the most horrific conditions, was closed for six days.

Zaff didn’t return home until late afternoon on the 25th, 18 hours after official blizzard conditions were over and having clocked 50+ hours at the office. On the drive, he saw iced-over buildings and trucks buried in snowdrifts. “It reminded me of [the movie] The Day After Tomorrow. … The impacts were tremendous.”

In his AMS presentation, Zaff compared the 2022 event to disastrous storms in 1977 (20+ fatalities, 69 mph winds, only 12” of snow yet drifts swallowed homes) and 1985 (5 fatalities, 53 mph winds, 33” snow), as well as the “Great Christmas Storm” of 1878, one of the first well-documented lake effect snow events, though lake-effect processes weren’t understood at the time. “This will likely be the storm of comparison now,” he says. “Once-in-a-generation” turned out to be right.

Future Lessons

Moving forward, said Zaff later, “Our intention is to further our relations with our Core Partners, including elected officials, emergency management, and the media [and] provide more probabilistic information that supports our ongoing Impact Decision Support Services. We hope to improve our outreach as well, instilling more confidence with the public.”

NWS will continue to provide improved decision support for partners, which may lead to more proactive road and school closures that could save lives in the future.

Photo at top: Buffalo roadways at 4 p.m. on December 25, 2022, 18 hours after blizzard conditions had passed. Photo credit: David Zaff.

About 32WAF/20Meso/28NWP

Predicting and understanding storms and other weather events is a complex business with real-world impacts. The American Meteorological Society’s 32nd Conference on Weather Analysis and Forecasting/28th Conference on Numerical Weather Prediction/20th Conference on Mesoscale Processes brought researchers, forecasters, emergency managers, and more together to learn about and discuss the latest scientific developments. The conferences took place in Madison, WI, and online 17–21 July, 2023. Recordings of the sessions are available here.

CalFiDE: Observing Large-Scale Fires from the Air and the Road

Mosquito Fire and plane propeller

A Research Spotlight from the 14th Annual Fire and Forest Meteorology Symposium, 2–4 May, 2023

Through the smoke of record-setting Canadian wildfires–which continue to burn millions of acres in the north–the importance of understanding huge, landscape-scale fires has never been clearer. In a 4 May presentation in the ninth session of the 14th Fire and Forest Meteorology Symposium, Brian Carroll discussed recent efforts to gather scientific observations on these types of landscape-scale wildfires in California and Oregon through CalFiDE, the California Fire Dynamics Experiment. His team looked at the behaviors of these fires and the winds they create and interact with, as well as the impacts of smoke plumes on air quality.

Field observations of wildfires this large are very rare. The CalFiDE team (including scientists from NOAA, CIRES, San Jose State University, the University of Nevada Reno, and NASA) used airborne and ground-based vehicles and a satellite to take measurements of five fires in August–September 2022. That included the Mosquito Fire, the largest in California that year, which burned more than 76,000 acres and prompted evacuation orders for 11,000 people. 

Carroll described the difficult and potentially dangerous process of conducting continuous observations of huge fires, without getting in the way of firefighters and emergency managers.

“There’s an aircraft exclusion zone that’s dedicated for the firefighters,” he notes. “The pilots have that information and avoid those areas but the pilots’ own decisions to keep our aircraft safe against the strong fire-generated winds and smoke are also a big driver. Even at a safe distance from the strong updraft produced by the fire, the wind convergence into the smoke column had to be compensated for by angling the plane away.” 

They were aided by state-of-the-art mobile Doppler lidar systems that allowed them to map air and fire behaviors over large distances in complicated terrain. “There are few lidars in the world capable of making these wind measurements while moving, and that mobility is important when dealing with wildfires that are constantly evolving,” Carroll says. “The lidars also provide real-time information on the winds and location of smoke layers, and we use that information to optimize sampling patterns and target layers for sampling trace gases.”

The CalFiDE team conducted surveys with a NOAA Twin Otter airplane, using Doppler lidar, infrared imaging, and trace gas measurements. They also drove an instrumented pickup truck (known as PUMAS, the Pick-Up-based Mobile Atmospheric Sounder) on the outskirts of the fire with additional Doppler lidar and temperature measurements, getting a 3-D picture of the winds above the truck as they drove. Meanwhile, the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA’s Terra satellite provided a broad swath of smoke distribution information from space.

Above image: Fires observed during the 2022 CalFiDE campaign. Aircraft bases of operation with 1-hour flight range ring are shown in black, and platforms involved are on the right. The Twin Otter and PUMAS both had scanning Doppler lidars capable of profiling winds while underway.

The airborne lidar provided cross-sections of fire updraft cores (areas of hot, rising air) and smoke plume motions, complemented by the infrared imagery capturing the fire’s shape and evolving intensity. These are some of the first measurements of their kind, and will provide important ground-truth comparisons for fire and air quality modeling.

Plots of airborne Doppler lidar measurements show a side-view cross section of smoke plumes over fire. These are vertical profiles of upward/downward winds (vertical velocity) from the Mosquito Fire on 8 September, 2022, taken at 7:03 pm (top) and and 7:17 pm (bottom). Darker red indicates faster upward air movement, and the black lines correspond to the smoke plume. Black arrows show wind speed and direction at different heights. Colored dots show the altitude of the ground surface and the “brightness temperature” (intensity of the fire heat) at each location based on longwave infrared imaging.

PUMAS observations also allowed the team to generate a high-resolution picture of smoke behavior in nearby areas—for example, the ways smoke lingered in valleys during calm conditions, and how rapidly air quality improved when sea breezes disrupted the smoke layer.

“Driving around these local valleys, in a few kilometers you could have a huge change in how much smoke there was, and a large change in temperature. And there’s a major change in boundary layer dynamics as you move in and out of those regions.”

Brian Carroll, Research Scientist at CIRES/NOAA

PUMAS data showing smoke-filled valleys. Very high concentrations of smoke in the morning, confined in the lowest 500 meters (top panel), transitioned to cleaner air (bottom panel) with the introduction of a sea breeze that traveled through the valleys. Data curtains (colored vertical stripes) depict lidar attenuated backscatter, which correlates with smoke concentration, along a 56 km driving route. Arrows show wind direction, with size and color indicating wind speed.

“The West Coast of the United States has experienced terrible fire seasons recently, with smoke impacting the lives of millions and fires themselves displacing many others. People across the U.S. and Canada have gained additional insight this year into what that’s like. We need more comprehensive information about how these fires grow, how the smoke moves, and the atmospheric conditions that interact with the fires, as we face a future that will likely see even more extreme fire seasons. The CalFiDE team’s efforts will help meet those needs,” Carroll says.

An article providing an overview of CalFiDE has been submitted for publication in the Bulletin of the American Meteorological Society

Brian Carroll is a research scientist with the Cooperative Institute for Research in Environmental Sciences (CIRES), working in The NOAA Chemical Sciences Laboratory (CSL) Atmospheric Remote Sensing Program.

The recording of this session is now publicly available here.

About 14Fire

Meteorology and wildfires are intimately interconnected—and wildfires are becoming increasingly severe and frequent in many parts of the United States. From local residents and firefighters on the ground to planners and insurers, to people hundreds of miles away breathing wind-driven smoke, society relies on our ever-improving ability to understand and forecast fires and the related atmospheric conditions. The American Meteorological Society’s 14th Fire and Forest Meteorology Symposium brought together researchers and fire managers to discuss the latest science. All conference presentations are now publicly available.

Top image: Mosquito Fire flames and smoke on hillside, seen from the NOAA Twin Otter during CalFiDE on 8 September 2022. Photo credit: LT Nick Pawlenko.