by Mary M. Glackin, Senior Vice President, Public-Private Partnerships, The Weather Company
Forecasts of hazardous weather have continually improved, particularly over the past few decades. It is oft-cited fact that 5-day forecasts are now as good as 3-day forecasts were 20 years ago. At the same time, the public has more choices than ever in how it accesses weather information. In particular, we are seeing explosive growth in the web, apps, and social media outlets such as Facebook and Twitter. Yet in the aftermath of a severe event, it is common to hear, “I didn’t know” either from public officials or the public at large.
It is this latter issue that the United Kingdom’s Met Office and the Irish Meteorological Service (Met Éireann) were seeking to address when they recently announced their plans to name storms this fall and winter. And to kick the campaign off, they are soliciting the public’s help in picking the names. After watching other country’s experiences, they believe naming significant storms will increase public awareness of severe weather and thus improve appropriate responses to warnings.
Several European countries name winter storms. For example, the Free University of Berlin’s meteorological institute has been naming them since the 1950s, and these names are adopted and used by the media and the German Met Service, Deutscher Wetterdienst. In the U.S. and elsewhere, very impactful storms become named by the media; think Snowmageddon in the Northeast (2010) and St. Jude Storm in the U.K. (2013). In the U.S., The Weather Company (TWC) began naming winter storms in 2012-13, citing the importance of communicating in social media–especially Twitter, which requires a hashtag. Rightly or wrongly, this effort was roundly criticized as having suspect science and for being a marketing ploy.
After three years experience at TWC, here is what we can report: Twitter alone provides an incredible reach where we routinely see more than one billion people receiving tweets using the storm name. Millions of tweets are sent using the hashtag from government agencies, school districts, utilities, businesses, and the general public. These hashtags also allow the NWS and others to find real-time weather data tweeted by citizens that can be used in nowcasts and other storm reports.
The criteria to name a storm are pretty simple: it must meet the National Weather Service winter-storm warning criteria, and it must be expected to impact at least two million people and/or 400,000 sq. km. We use a formal process and a committee of three meteorologists to review these criteria for each possible storm, and while we consider the criteria strict, the storm-naming committee still reserves the right to override the quantitative decision in certain circumstances. Some of the factors that may influence decisions to override the naming rules include the degree of historical significance of the event (e.g., accumulating snow in South Florida, a summer-season snowstorm, etc.); see more details here. The U.K. is planning a similar system using their two highest warning levels, so names are only applied to the storms that present a significant threat.
What’s in a name? Well in this case, the name is the headline to attract attention to the threat. It is the beginning. It needs to be backed up with easy-to-understand information that details the threat to a specific locale and appropriate call-to-action statements. But, in this information-saturated world, this headline/hashtag is key. We need to recognize the importance of serving people in the way they find easiest to consume information vs. how we are most comfortable in delivering it.
Could we take this U.K./Ireland announcement as a call to the U.S. weather enterprise to come together to see how we could maximize the use of social media to improve the public response to severe weather events? Twitter is here to stay, and it requires hashtags to separate the relevant information from an avalanche of incoming data. Hashtags are spilling over into other social media as well. It is easy to create a hashtag from a tropical storm name. If we could come together as a community to address this for winter storms, we’d no doubt learn a lot that could then be applied to significant weather at the local scale. The nomenclature could be something much different than what’s used in tropical storms or what we have been using.
What’s important is to lead as a community in this social media era. For our part, we are willing to share our experiences, transition our system, and/or help set up an enterprise-wide naming system. During major snow events, the reach on Twitter has been over a billion. What would our reach be with all of us working together feeding into the same system to keep people informed during these hazardous events? Are we ready to re-engage on this topic as a community?
Jeff
A New Web Vision
by Tom Champoux, AMS Communications Director
You may have noticed that AMS rolled out a new website today, updating content and navigation in a brand new design. We hope you like it. This is a critically important step for AMS as we continue to improve the communication of our value to our members, to the greater weather, water, and climate community, and to society.
Many tens of thousands of people in our community work extremely hard to create and share knowledge to benefit society. Our website is a tremendously important vehicle in supporting that effort—engaging, informing, and inspiring people. It is a place for the entire community to connect, share, and collaborate. The redesign helps the website do all this by capitalizing on more up-to-date technology and creating a more modern online experience.
The new look points the website in a new direction, as well. Immediately you’ll notice the shift in the homepage, which previously tried hard to be all things for all people, inevitably with limited success. The new home page focuses less on engaging members directly. Instead, we put more focus on educating all visitors about how AMS supports and strengthens this vibrant community. As a result, navigation is simpler and cleaner; there are more images to convey the excitement, dedication, and enthusiasm that is so apparent across the entire enterprise.
Throughout, the colors are more modern, and the look and feel better represent the tremendous passion and commitment of AMS members and their community. We wanted to accurately capture that spirit in this new site, and of course make it is easy to find what’s new at AMS.
We felt the website would serve AMS best by
- delivering the AMS’s core assets;
- educating and inspiring audiences inside and outside the community;
- expressing the value of AMS to society at large; and
- creating community, bringing audiences together.
Those audiences extend far beyond our membership. While AMS has more than 13,000 active members, we reach a much larger and vibrant community that includes more than 28,000 Facebook and 10,000 Twitter followers. There are also thousands more volunteers, meeting attendees, presenters, authors, and many others who are deeply engaged with AMS and our work, but are not currently active members. These audiences span the career spectrum, from students to late-career professionals. We reach thousands of educators as well as all kinds of enthusiasts. We believe AMS has much to offer everyone and we wanted to be sure the website effectively showed all the ways we can help the community and society.
We’ll continue adding new content, updates, and information in the coming weeks and months to ensure that the AMS website remains a dynamic, engaging online experience for all audiences. We welcome your feedback and comments.
Is This Our Moonshot Moment?
by Douglas Hilderbrand, Co-Chair, AMS Board on Enterprise Communication
Have you ever imagined being a NASA scientist back in the 1960s – staring at the seemingly impossible challenge to send people to the moon and return them back to earth safely? And, doing it with the entire world watching? For the weather, water, and climate “enterprise,” that grand challenge might well be upon us.
Extreme events are now a fixture on the evening news, captured by miniature cameras and video recorders in our hands, and shared across our network via social media. Yet, heartbreaking stories of lives lost and communities devastated continue. Is this our moonshot moment? Physical science, social science, and technological advances have aligned to where the foundational warning process can take a giant leap forward from the time of lunar landings in the early 1970s to today’s smart phones.
On 4-6 August, leaders across government, academia, and industry sectors will come together at the AMS Summer Community Meeting on the campus of North Carolina State University to engage one another on how to modernize the end-to-end warning process. This summer’s theme, “For the Greater Good: Strengthening Collaboration, Consistency, and Trust to Support Informed Decision Making,” points to the ingredients that are needed to take a giant leap toward:
- Improving how weather, water and climate threats are predicted and communicated
- Enhancing information for risk management decisions through better expression of urgency and confidence
- Supporting appropriate actions by the public
The value of weather, water and climate information is reflected in the decisions that are made, actions that are taken, and outcomes that result. I’m reminded of a 2011 quote from NOAA Administrator Dr. Kathryn Sullivan, who stated, “Conversation is the seminal technology of all societal change.” The SCM is an important step in bringing that conversation to the private, public, and academic sectors in an effort to help bring about meaningful societal change.
The 2015 Summer Community Meeting in Raleigh will help identify opportunities to collaborate, increase consistency and build greater trust within the enterprise and outward to the public as we take on our moonshot moment. The challenges that we face today may not be quite as dramatic as landing astronauts on the moon, but they are certainly as important with so many lives and livelihoods at stake.
Federal Funding for Research in Weather, Water, and Climate
by Paul Higgins, AMS Policy Program Director
In June, the U.S. House of Representatives voted to cut funding for Earth system science and services. One bill cuts roughly 5% each from NASA’s Earth Sciences and the total NOAA budget. That same bill also cuts more than 16% from the total funding for NSF’s Geoscience and Social, Behavioral, and Economics (SBE) directorates. In a separate bill, the House voted to cut more than 9% from Biological and Environmental Research (BER) in the Department of Energy’s Office of Science (though the name can be misleading to some, BER houses the research most relevant to our community).
Both bills passed with support from nearly all House Republicans and opposition from nearly all House Democrats. So the cuts suggest that House Republicans do not think as favorably of the Earth sciences as the AMS community might like.
To become law, the Senate and the President would need to sign off on these cuts. That doesn’t appear likely at this time but the paths to agreement for any funding bill—which must be approved every year—are far too complicated to predict. The good news is that Republicans in the Senate (and Democrats in both chambers) appear more predisposed to fund weather, water, and climate research and the President pushed for increases in weather and climate research through his budget proposal earlier this year. The bad news is that the House, Senate, and President must all ultimately agree on funding decisions and even a compromise does not look like good news for our community.
Two contributing factors to the House funding bills are particularly noteworthy. First, the funding for Earth sciences is at least partially reflective of the differing views on how best to deal with the larger budget situation.
The Federal budget consists of two types of spending: 1) mandatory programs (e.g., Medicare and social security), and 2) discretionary programs. Discretionary spending is often further divided into defense and non-defense spending. Much of the funding for science (e.g., NSF, NASA, NOAA, DoE, and USGS) is in the non-defense discretionary (NDD) category.
The President’s proposed budget for NDD spending in FY 2016 of $526 billion exceeds by $33 billion the proposals created by Republican leadership in the House and Senate of $493 billion. Note, however, that even the President’s proposed budget remains roughly $15 billion (2.8 percent) below FY 2010 levels (assuming a rate of inflation of 1.7% per year). So the Federal budget for research (along with everything else) is under pressure even under the President’s higher numbers.
Some of this ties back to the Budget Control Act (BCA) of 2011, which made direct cuts to discretionary spending (e.g., funding for science) along with even deeper spending cuts through “sequestration”—automatic across-the-board cuts to both defense and NDD that took hold because Congress failed to agree to a more comprehensive deficit reduction plan (which would have involved a combination of tax increases and more targeted spending cuts). The sequestration cut to NDD is an additional reduction of about six percent.
This overarching budget situation (or conflict) is both a justification for cutting programs and politically expedient cover for those who want to make funding cuts for other reasons, which brings us to the second factor.
The second contributing factor to the House funding bills is the President’s aggressive efforts at climate change risk management. These efforts, which have increased over the last year or so, appear to have angered some, particularly in the House. That anger seems to be being expressed in funding decisions for all of the Earth sciences. At first look, that may not seem to make sense because climate science is a tiny fraction of the Earth sciences and climate change risk management is only tangentially related to climate science. However, the Earth sciences are somewhat easier politically and procedurally for members of congress to focus on than climate science would be alone.
No matter the cause, our community has a strong interest in helping Congress better understand the value of the Earth sciences to the nation and the world. AMS sent a letter to all members of Congress to raise awareness of our contribution (http://ametsoc.org/sss/letters_geosciences_support_may_2015.pdf) but similar efforts from individual scientists throughout the country will likely be needed if policy makers are to view the Earth sciences in a more favorable light.
Strong positive messages, such as those in the AMS letter, are most likely to convey effectively the importance of our science and services to the nation.
Weather and climate information helps society manage risks and realize opportunities associated with existing weather patterns and changes to the climate system (natural and human caused). The services that result can include weather forecasts and warnings, flood and drought prediction and monitoring, natural hazard preparedness and response, public health monitoring, disease prevention and control, assessment and management of fire risk, and decision support for water resources, agriculture, transportation, and other key economic sectors.
Thoughtful engagement with the policy process has the potential to help shift the focus in Congress to the critical role the Earth sciences play in advancing the national agenda. That would help secure the support and resources that our community needs to make critical information and services available.
AMS Washington Forum: Unleashing Big Data and Big Discussion
Today at her keynote address to the AMS Washington Forum, U.S. Secretary of Commerce Penny Pritzker announced that NOAA is forming five new alliances to help bring its vast data resources to the public. The partnerships with Amazon Web Services, Microsoft Azure, IBM, Google, and the Open Cloud Consortium address the growing need for access to NOAA’s huge—and rapidly growing—environmental data resource.
That Secretary Pritzker’s announcement came at the opening of this year’s Forum is a testament to the sustained focus of these annual AMS gatherings in Washington, D.C. The Forum revisits recurring themes to build year-to-year unity—and progress—to the discussions. Last year, for example, the AMS Washington Forum participants focused on how data integration across disciplines and sectors drives the effectiveness of the weather, water, and climate enterprise. The Forum found that
Working across agencies and across sectors (e.g., health, energy) is becoming a new “normal” for solving problems. All agree the needs and demands for data, information and forecasts are continuing to change, so our enterprise must remain flexible and agile.
Though the context last year was more about the use of commercially provided data, this continuing Forum theme resonates with Secretary Pritzker’s announcement today. The new government-private sector partnerships are part of the overall movement toward “open government”–accessible, consistent data practices—that should enhance the flexibility and agility emphasized at the AMS Forum last year.
Forum participants also generally agreed last year that “while the private sector needs to take on a bigger role in the provision of weather data, the public and private sectors need more time to jointly determine the best path forward.” And indeed at that time NOAA was in an information-gathering phase preparing for the partnerships announced today. The agency issued a Request for Information (RFI) in February 2014 to see who might be able to help move NOAA data onto the cloud. Commercial partnerships would, according to the RFI, help pull together disparate NOAA sources and web sites and help people “find and integrate data from these sources for cross-domain analysis and decision-making.”
Data integration was not the only motivation. Being the main provider of its own data saddles government agencies with burgeoning information technology needs.
In a separate email news letter today, NOAA Administrator Kathryn Sullivan elaborated on the scope of the Big Data need:
Of the 20 terabytes of data NOAA gathers each day — twice the data of the entire printed collection of the United States Library of Congress — only a small percentage is easily accessible to the public.
The cloud was a way to alleviate this situation, as the RFI stated:
NOAA anticipates these partnerships will have the ability to rapidly scale and surge; thus, removing government infrastructure as a bottleneck to the pace of American innovation and enabling new value-added services and unimaginable integration into our daily lives.
Private sector cloud services have a history of meeting such challenges. The cloud services are able not only to store the huge quantities of data NOAA produces each day but also to provide opportunities for cloud-based applications. This means information processing is possible remotely so that each user does not need to have his or her own advanced infrastructure to move and manipulate vast troves of data. Thus, working in parallel with traditional NOAA data distribution channels, cloud services are expected to enable widespread use of Big Data and to drive private-sector development of applications.
The continued AMS discussions here in D.C. over Wednesday and Thursday will further amplify such continuing themes as Big Data, providing an especially rewarding venue for participants who can return year after year to the Forum. For example sessions tomorrow on “Rail and Trucking” and “Information Needs for Water Related Extremes” hinge in part on data dissemination. Surface transportation was one of the panel topics last year, as well, meaning repeat participants this year will have an opportunity to update their earlier impressions and find out how opportunities in that field are progressing.
By reaching out to the innovators of the cloud, NOAA stated it was
looking for partners to incite creative uses and innovative approaches that will tap the full potential of its data, spur economic growth, help more entrepreneurs launch businesses, and to create new jobs.
That’s pretty much the same reason leaders of the weather, water, and climate enterprise return year after year to the AMS Washington Forum.
A Year Ago in Oso: Wrong Place at the Wrong Time
At 10:36 a.m. on 22 March 2014, near Oso, Washington, the earth began to move. At first the lower section of slope rising from the North Fork Stillaguamish River slipped. Then the rise above that collapsed, ultimately sliding so fast that nothing could stand in its way. An eyewitness near the river saw water tossed aside and turn black. A 30 m high wall of turbulent earth roared across and along the valley. About 8 million cubic meters of dirt and rock buried the village of Steelhead Haven and killed 43 people. The slide ultimately dammed the river as it raced at 60 km/h along a 1 km wide, 1 km long swath.
The Oso landslide (aftermath photo above, Mark Reid/USGS) was a scientific mystery. There was no obvious geological trigger, like an earthquake. And the slope itself, while prone to slides, was not precariously steep. Meteorologically, it was a rain-free day in a week of no precipitation. However, two new studies—one of them forthcoming soon in the Journal of Hydrometeorology—show why Steelhead Haven was in the wrong place at the wrong time, both geologically and meteorologically.
An overview paper this January in Earth and Planetary Science Letters showed how the Oso landslide underwent two stages of motion. The lower slope slipped slowly for about 50 seconds until the more radical collapse from above led to a high mobility liquid state called a “debris avalanche.” As the landslide spread across the river the debris picked up more moisture. The flow of dirt and rock spread the damage far beyond the initial slip of earth. The gushing mud and rock actually splashed against the opposite slope across the river and spread back upslope on top of itself.
Previous landslides in the Oso area had never attained that extremely mobile second stage. The slope of the 180 m high rise above the river is less than 20 degrees, and scientists have found highly mobile landslides usually start with greater than 20 degree slope—typically more than 30 degrees. What made this one different?
The paper’s authors, Iverson et al. say one reason was the porous geology of local sediments and silt. This porosity may have increased suddenly as the base of the slope started to slip. Then as ground slid the pores contract, raising water pressure and increasing liquefaction that greases the skids for faster movement and more contraction. Furthermore, as rock and dirt overran the river, the slide picked up another 50,000 cubic meters of water and scoured the river bed for more debris.
But if a critical sensitivity to initial geological conditions existed why did the land give way on a sunny day like 22 March 2014 instead of during an earlier, rainier part of the season?
The analysis by Brian Henn et al. in Journal of Hydrometeorology shows that the precipitation in the three weeks before the landslide was unexceptional (such periods are expected every two years or so) if compared to the soaking that the area can get during the rainy season. But the rain was exceptional (an 88-year expected return period) when compared to similar March periods of the past, and that is a bad time to get wet.
Since March is late for the rainy season, this meant additional water charged deep soils that were already wet. Heavy rains earlier in the year encountered soils that contained less moisture. The late rains came on top of an already wet season as well as four wet years before that.
As a result, six days before the landslide soil moisture for the water year peaked and was wetter than would be expected every 40 years at that date. The soil moisture had surged beyond median levels in just a few weeks. [See figure above from Henn et al. 2015]
In other words, Oso was primed for a landslide, even on a dry day, partly because some of the rain had fallen late in the season—poor meteorological timing for the village of Steelhead Haven.
From Florida, A Reminder About Freedom of Expression
The Florida Center for Investigative Reporting published allegations this week that the terms “climate change” and “global warming” were banned from state government communications in Florida, including state-agency sponsored research studies and educational programs. The Washington Post followed with claims, for example, that a researcher was required by state officials to strike such words before submitting for publication a manuscript about a epidemiological study.
No evidence of a written policy or rule has been reported, and state officials have denied any policy of the sort. Meanwhile, the media are hunting through Florida websites trying to find state documents produced during the administration of Gov. Rick Scott with contents that would contradict the charges of an unwritten policy, imperfectly enforced.
The controversy is one in a string of recent events reminding us how much scientists rely on their freedom of expression. Most often the problem has been the freedom of government scientists to speak about their work with the public. Lately this has caused a media blizzard in Canada.
Science ethicists may argue one way or another about where the limits of public expression are for government scientists when they contradict policy goals. And certainly—as well seen most obviously in the Cold War—such goals can include national security concerns. But the AMS stance on the filtering or tampering of science for nonscientific purposes is quite clear in the Statement on Freedom of Expression:
The ability of scientists to present their findings to the scientific community, policy makers, the media, and the public without censorship, intimidation, or political interference is imperative.
Freedom of expression is essential to scientific progress. Open debate is a necessary part of science and takes place largely through the publication of credible studies vetted in peer review. Publication is thus founded on the need for freedom of expression, and it is in turn a manifestation of freedom of expression.
One might think the job of journals is to screen out unwanted science, but it’s quite the opposite. Papers are published not because they are validated as “right” so much as they are considered “worthy” of further scientific consideration. In addition, the publication process itself—which AMS knows well in its 11 scientific journals—is not just for authors to report and interpret their work. It relies on free discussion. The peer review process usually allows reviewers maximum protection of anonymity to preserve the ability to speak freely about the manuscripts being scrutinized. The papers that pass review are then the starting point for documenting objections, alternative interpretations, and confirmation, among other expressions that only matter if made accessible to other scientists through peer reviewed journals.
The AMS Statement recognizes that such freedom implies responsibility:
It is incumbent upon scientists to communicate their findings in ways that portray their results and the results of others, objectively, professionally, and without sensationalizing or politicizing the associated impacts.
Scientists are not the only ones to treasure such freedoms, of course. Society benefits from the progress of science every day. This only happens when scientists freely, promptly, and prolifically report what they find—and that means exactly what they find, not what they are told to find. The alternative is to compromise the pursuit of truth and the very foundations of our health and prosperity.
We all become victims when science is not shared and cannot flourish. The fact that climate change has deep social, economic, and political implications today means it is even more important to recognize that with increasing value of climate change science comes the increasing temptation for policy makers to co-opt and alter that science. As the AMS Statement warns, the principles of free expression “matter most—and at the same time are most vulnerable to violation—precisely when science has its greatest bearing on society.”
For Data to Live Long and Prosper
On February 25, the AMS released its new policy on citations for data sources in journal articles. We were all set to tell authors about it when sadly, far bigger news stole the attention of scientists everywhere. The great creator of Spock, actor Leonard Nimoy, had died. Within two days, the story of data policy had become the story of Star Trek.
“That’s not logical,” you say.
OK, we’re not Vulcan, but even a human can see this. Data. Spock. Now is the time to bring them together.
Nimoy made an improbable—some would say illogically great—impact on society masquerading as a half-Vulcan, half-human creature named Spock hurtling through space on both the small and big screens. The tributes following Nimoy’s death last week have spoken of his ability to transcend the seeming limitations of such a curious role. Nimoy embodied racial ambiguity in a time of prejudice, ennobled diplomacy and rationality in an age of war, and gave voice to those who feel alien in their own neighborhoods and schools.
Of all the dualities in Spock’s character—so brilliantly portrayed by an immigrant’s son who skipped college—arguably the most explicit was as the science officer on bridge of the “Enterprise.” His struggle to remain true to the Vulcan creed of logic without emotion was a perfect expression of science in its time. For nerds of the 1960s and ‘70s, Spock’s reliance on logic echoed the haughty aloofness with which popular culture characterized scientists of the Cold War. But through his formidable devotion to knowledge, truth, and teamwork—working through all the pointy-eared social awkwardness he faced among his crew-mates– Spock somehow made science a new kind of “cool” long before geeks made billions of bucks with computers.
The thing is, scientists are a duality, much as Spock and Captain Kirk were two sides of a coin. They get emotional about two things. One is logic. Scientists, like mathematicians, get dewy-eyed about beautiful theories, elegant proofs, and ingenious solutions. The other is data. Unlike Spock, they work themselves into a frenzy over data. The best way to make scientists swoon is to produce data that reveal secrets.
For science to live long and prosper, that data need to be treasured like a home planet. For a long time, most scientific publishers thought it was good enough that journal authors would casually mention data archives in their Acknowledgments. In this age of computer models and constantly updating technology, that’s not good enough. Now authors must use carefully sourced and dated formal citations and references that in turn lead to safeguarded, easily accessible repositories. The author’s guide online gives some helpful examples.
The new citation policy is just one step of many advancing data archive practices that were recommended in the AMS Statement on Full and Open Exchange of Data adopted in December 2013. That statement also calls on funding agencies to recognize the costs of managing data. It recognizes that data preservation and stewardship should be emphasized and discussed at meetings. It says AMS should promote conventions and standards for metadata to increase interoperability and usage, and that the Society should foster ways of deciding what data should be kept to improve preservation practices in the future.
AMS is not alone in this shift. There are others in the chain of research, publication, and archiving trying to do for data what Spock did for logic. Our Society is one of the original members of a year-old team of publishers, data facilities, and consortia called the Coalition on Publishing Data in the Earth and Space Sciences. COPDESS is working to ensure that data are preserved through proper, secure funding, and that careful decisions are made about what should be saved.
Most importantly, this international movement toward protecting and providing data is meant to preserve the scientific process. Science needs published studies to lead to more studies that can confirm or reject findings. According to the AMS Statement,
AMS should strongly encourage an environment in which scholarly papers published in scientific journals contain sufficient detail and references to data and methodology to permit others to test each paper’s scientific conclusions.
All that depends on data being available in the review process as well as in perpetuity, with published results closely aligned with open archives.
Logic and Data: the duality of the scientific spirit. It is easy to celebrate one without the other, but it would not be proper. Spock would understand.
A Meteorologist Who Changed the World
At the height of his fame, Archie Williams achieved greater public renown than pretty much any other meteorologist in history. He played a part in a revolution with a lasting impact on society seventy years later. He was a pioneer in another revolution that has yet to realize its potential.
Surprisingly, few meteorologists have heard his inspiring and unlikely story. Now is the time to tell it, especially because this is Black History Month. Archie Williams was one of the first African American meteorologists. His story must be known—a reminder of the perseverance and talent of pioneers as well as the cost of having so few African Americans in our science community. What follows is admittedly unusually long for a post in this blog. But the story is unusually compelling too: many readers will be interested going a step further and reading Williams’s full story in his own words. We encourage you to seek the oral histories from the Bancroft Library of the University of California, Berkeley, and the Amateur Athletic Foundation of Los Angeles.
Archie Franklin Williams was born in Oakland, California, in 1915. His paternal grandfather was a Spanish-American War veteran and his grandmother a storied leader of the black community. His father, a grocer, died when Williams was young; his mother worked as a cook for a family in San Francisco. They lived in a mostly white neighborhood within sight of the university campus in Berkeley. Nonetheless their means were quite modest, as was common in the Depression. Williams recalled,
Everybody was broke. You ate a lot of beans and stuff like that. I never missed a meal and I never went to school with holes in my shoes.
Racial discrimination reared its ugliness, as well—a swimming hole at a nearby amusement park didn’t allow blacks, for example, nor did some local restaurants and theaters. Boy Scouts were off limits as well, even though many of Williams’s white friends were in the local troops. These conditions rankled him but were small irritants compared to the limits he would encounter later.
Williams had typical pursuits, camping and fishing, building a wooden boat based on plans in Popular Science magazine, playing sandlot baseball. Plus he had won a local contest for his model airplane making—airplanes were a passion. And he liked to run races, eventually joining the track team in high school. Despite success in athletics—the quarter mile was his distance—Williams says he “fooled around a lot” in school, with poor grades to show for his attitude. After high school, he got a job as a golf caddy, but a friend suggested they try going to a junior college. The two young men decided studying might be cheap enough and better than menial work.
A Second Chance
This is where the Archie Williams story takes a turn toward the remarkable. Here was a typical kid, not serious about anything, not marked for greatness. Williams was the kind of indifferent student probably none of us would have expected to wind up in science. How many students give up because they drift through high school? Because they are the sons of grocers and cooks? Because they don’t look like the people who are in various professions?
Williams, however, made the most of his second chance at school. He decided he wanted to improve his lot and be an engineer. He also found a talent for school. He took trigonometry for the first time. Analytical geometry. Physics. Surveying. Subjects came easily. He got A’s. Within a year, Williams had taken enough courses to qualify for the University of California at Berkeley. It was 1935.
At this point, Williams was also doing well in the small-stakes world of junior college track. But—here again this must seem amazing to us today—he had no thought, no chance, really, of sports as a ticket to college, let alone to notoriety. “I was a nobody. Nobody recruited me…and I didn’t care because I was going to play in the physics lab.”
Berkeley’s track coach, Brutus Hamilton, was of the same mindset—he was an anachronism even then. He was a “father figure” who knew his athlete’s grades, not just their lap splits, by heart.
Hamilton was an exception in another way: There were maybe a few dozen black students at Berkeley at the time, and Hamilton must have known he’d lucked into a special one when Williams asked to be on the track and field team. At a time when many college coaches wouldn’t allow black athletes, Hamilton was open to anyone.
Athletic Glory
While Williams was succeeding in the engineering labs, he was progressing just as rapidly in the stadiums. Sports were an equal channel for his determination and skill. By the spring of 1936 the unknown quarter-miler had dropped three seconds off his best time. He was doing well enough to win the NCAA championships in Chicago. Williams was breaking records. That summer he qualified as one of nine African Americans to represent the United States in the Olympic Games—in Hitler’s Berlin.
The prejudices from the American sports world were, if anything, harsher than those shown to the team when they arrived in Germany. The government aside, the locals were curious:
I think they wanted to see if the black would come off if they rubbed our skin. Jesse Owens might have been snubbed by Hitler, but he was a hero in the eyes of the Germans. They followed him around the streets like he was the Pied Piper.
Hitler had suspended many of his regime’s most odious rules during the games. The team, by contrast, offered only segregated room assignments for the African Americans and other non-white athletes.
Williams later told the Oakland Tribune,
As I recall, when I came back home . . . people asked me, ‘How did those dirty Nazis treat you?’ To which I always replied, ‘Well, over there at least we didn’t have to ride in the back of the bus.’ “
There was, however, no denying Williams, the world record holder, his position at the front of the 400-meter race. Despite his relative inexperience in top-flight competition, he won the gold medal. Listening to Williams describe the feat, however, you can sense he retained his humility:
Somebody once asked me, “How does it feel to be the greatest in the world?” I said, “What the hell are you talking about? How do you know I’m the greatest in the world? There may be some guy down there in Kenya being chased by a lion that broke my record before breakfast.” I said, “I just beat the ones that showed up that day.”
Teammate Jesse Owens outran all the lions: he won four golds. In all, the African American track stars won 13 medals. They toured Europe as goodwill ambassadors and returned home heroes. Ultimately Jackie Robinson, younger brother of one of Williams’s fellow Olympians, broke the color barrier in baseball and triggered a flood of African Americans into the sports limelight. But Archie Williams, Jesse Owens, and the Olympians of 1936 not only had embarrassed racial supremacists in Germany but also sent that initial–and very clear message–to fellow Americans. The revolution of opportunities in athletics began with these young men.
Sports would become a popular, powerful path to success for determined African Americans. There they were eventually welcomed to show their talents and compete unfettered. Thanks to the zealous Nazi propaganda to the contrary, Williams and his fellow African Americans had exercised an unprecedented power in politics and public opinion. They had achieved at an international scale.
But at home discrimination still kept them out of certain track meets, professional sports, and a host of careers at home. One of those forbidden careers in the late 1930s, as Williams discovered when back at Berkeley, was engineering. By this time his track career was suddenly over, due to hamstring injuries. What might be a crisis for a young, star athlete of today was not for the focused and capable Williams—he was at school to be an engineer. But the campus engineering societies were not open to African-American students.
When I went and signed up for engineering, my counselor said, “You’re crazy. Why don’t you be a preacher or a real estate man or something like that? You’re not going to get any job as a engineer.” I said, “Well, I want to study it, so just sign me up.” Then at the end they arranged interviews with General Motors, Lockheed, and other firms. And he did it, well, almost on purpose, just to show: “See what I told you.” They said, “Well, you have a nice record. Don’t call us, we’ll call you.” I knew it wasn’t going to be, but I did it anyway.
On to Meteorology
No one would hire Williams to be an engineer, but ironically the Nazis intervened in his life again. Their relentless aggression would open yet another channel of achievement for African Americans–in science and aviation. Williams had participated in the campus ROTC training even though—ironically—he was not eligible for an officer’s commission even though he wanted to serve in active duty. Furthermore, in 1939, the year he graduated with his engineering degree, Williams was working at Oakland Airport doing maintenance in exchange for opportunities to take flying instruction through the Civilian Pilot Training Program. Eventually he was rated as an instructor—and took students unofficially because African-Americans weren’t allowed to teach flying. His background would prove perfect for the occasion.
In 1941, Williams—who was one of the very few black flight instructors in the country—applied to train the first black military pilots at Tuskegee Army Flying School in Alabama. The new corps of African-American pilots would go on to distinguish themselves in battle as the Fighting 99th Squadron, over North Africa and later Italy and the rest of Europe. Williams’s days as a flight instructor were numbered, however, in part because of his scientific training.
Williams, still wanting to serve as a pilot, applied for a commission and ended up getting sent to UCLA instead, to the meteorology program. At the time the war broke out, there were only three university-level meteorology programs in the country. The Army Air Corps had only 62 weather forecasters by July 1940; the entire nation had fewer than 400. The war would create a demand for thousands of forecasters and observers—a demand that could only be met by swift, efficient training, and massive enrollment. By 1942 there were more the 1,700 cadets enrolled in the national program and 6,000 completed the training.
Retaining these trained meteorologists in the field was a major thrust of the expansion of the AMS after the war. Some of the Tuskegee weather officers pioneered in meteorology after the war: the first African American weather cadet, Wallace Reed, became the first African American meteorologist in the Weather Bureau. John Willis went into weather technology development at Air Force Cambridge Research Laboratory. And Charles Anderson went on to be the first African American to earn a Ph.D. in the field and taught for many years as a professor at the University of Wisconsin and North Carolina State University.
At age 27 Williams was considered too old to be a fighter pilot and qualify as an officer that way; so he was ranked a cadet in the weather school. After the course at UCLA, however, he was finally sent back to Tuskegee to serve as a lieutenant—a weather officer—forecasting and mapping the weather, and eventually again teaching introductory flying skills.
We would get up in the morning. Since you had training and weather, you would jump in that plane and check the weather. I used to go up and fly around and see how the weather was, call back and say, “It’s okay to fly.” [laughter] A couple of times we got up there and had to fly away to Birmingham; the weather was so bad we had to spend the night in Birmingham. But it was fun. It was great because I was doing what I liked to do.
Williams and his Tuskegee colleagues were paid considerably less than their white counterparts at other bases. Nonetheless, after the war, Williams was a rare qualified pilot with meteorology credentials and stayed with the air force (as did several others of the 14 total African Americans who graduated in the military weather officer training program). With Truman’s order to desegregate the air force came new opportunities. By 1950 Williams had added a degree in aeronautical engineering from the Air Force Institute of Technology. He flew missions over Korea as well as forecasted for the war from Japan. He made a career as meteorologist for a number of air bases, in New York, Alaska, and California, finally retiring as a lieutenant colonel in 1965.
A Teacher’s Lesson
While athletics was progressively more and more attractive to motivated young African Americans, science and engineering, indeed weather forecasting, were slow to attract even highly trained people like Williams. Remaining true to his passion for education, Williams decided he might enjoy teaching as a post-military career. So he took teaching courses at the University of California-Riverside while finishing with the air force and then moved on to teach math and computer science for an affluent, largely white high school near San Francisco. From this position he also did some coaching and reached out with programs for underserved students in nearby schools.
A man who pulled himself up with a rare college degree, who was determined to study sciences, who helped open the floodgates for thousands of talented African American athletes in succeeding generations, who defied Nazi propaganda with Olympic gold, and who defied regulations so he could teach others to fly—such a man left dreams of engineering and experience in meteorology behind despite 22 years in the field.
Nonetheless, he had achieved lasting fame. And Archie Williams had changed the world…of sports, in particular. He opened doors for African American athletes. We all know that revolution turned out spectacularly.
The other revolution that Archie Williams and his fellow Tuskegee weathermen started–in science–is not yet a full triumph. As AMS Past President Marshall Shepherd puts it in his recent blog, preparing for a Black History Month episode of his talk show, Weather Geeks, this coming Sunday:
I actually know all of the current blacks with doctorates in meteorology. If I count them, I may actually have a finger or toe left.
Only two percent of AMS members are African Americans. In the race that Archie Williams wanted to win most of all—education and science—we have not yet reached the finish line.
The Gender Imbalance: Still a Persistence Forecast
In his Dot.Earth blog post today about the impending blizzard in the U.S. Northeast, journalist Andy Revkin addressed pointed questions about storms and numerical modeling to eight “extreme weather watchers” (nearly all of them doubling as media figures these days). Some of them specialize in snow. Some in numerical forecasting. More to the point, all eight are men.
In light of the gender imbalance of his ad hoc expert panel, Revkin asked for reader assistance:
I know lots of highly-respected female climate scientists, among them Jennifer Francis, Judith Curry and Florence Fetterer. But most high-profile, storm-focused meteorologists seem to be men. Please weigh in with names and links to women in this arena to broaden the field of view!
The gender imbalances in atmospheric and related sciences—whether in operational, broadcast, research, or other aspects of the field—are real. A good baseline for more discussion about the situation is a recent article (soon in print, but already open-access online) accepted for the Bulletin of the American Meteorological Society. Authors David MacPhee and Silvia Sara Canetto note that the atmospheric sciences have a particularly poor recorded of attracting and retaining women in academia. The survey of 34 graduate-degree granting institutions showed that women hold just over 17% of the tenure and non-tenure track positions, and only about 11% of the full professorships. Worse yet, the percentage of women in academic positions is not rising and not likely to rise in the near future.
The rate of women who were the lead authors of poster presentations at the recent AMS Student Conference in Phoenix was much higher—close to 40%. But the BAMS article and AMS membership surveys show that these proportions fall as students move on with their careers.
This failure to retain women in the field is being addressed in various ways, including targeted mentoring programs as described in BAMS not long ago as well as a more recent National Science Foundation funded initiative based at Colorado State University.
Not surprisingly, Revkin received some great suggestions for women experts from readers. The actual imbalance in the community, however, remains to be solved.
[Note: Updated 9:56 p.m.]