STEM Education: Looking Back and Looking Ahead

June 6, 2014 · 0 comments

by Tom Champoux, AMS Director of Communications

When I was in the fourth and fifth grade, my father visited my class on Science Day a number of times. I remember his visits vividly because he would always bring unique and interesting items with him–things no one else’s dad brought, like weather maps and rock samples. He once even brought in a grainy, amateur film that showed the volcanic island Surtsey being born off the coast of Iceland in the mid-1960s.

I also went with him many times to work, hanging out in his office while he taught class. There, my siblings and I would always find some interesting science toy or activity to play with and learn from. It was during these years that I learned so much about Earth and space science, and it served as the foundation for my love of science that has lasted a lifetime.

Officially my father was an Earth science and geology professor at a small community college in northern Massachusetts, but he also taught meteorology, and later even added algebra and computers.

This week, AMS released a new policy statement on STEM education (Science, Technology, Engineering, and Mathematics), and reading through it I was reminded of my exposure to science in grade school. I was reminded too of the power of science to excite and engage school children in ways other subjects can’t.

In the new AMS Policy Statement, AMS supports maintaining Earth systems science as an integral part of STEM education–both to provide all students with a basic understanding of the Earth system as well as to create a pipeline of students who will become America’s future scientists and researchers.

The Earth system affects all of us, every day–from severe weather to rising seas, from solar radiation to plate tectonics. Because so much of what we experience every day is part of a very large and complex system, it is critical that all students learn about that system and the relationship between all areas of Earth science.

Most scientists can vividly recall the time or even the moment when they fell in love with science. Like me, many were school-age when it happened. There’s an inherent excitement in science–in looking through a telescope or microscope for the first time, or in creating models of volcanoes or posters showing the lifecycle of common frogs. Children want to understand science and engage in it, and it’s vitally important that we provide every opportunity to do just that.

Tomorrow’s challenges in understanding and explaining water, weather, and climate will be solved by today’s students. And those scientists of tomorrow will need their peers to be a receptive and knowledgeable public capable of utilizing science to solve society’s challenges. Providing all students with the best possible understanding of how the Earth works, and how humans function on it, will be vitally important to people everywhere.