10-m Resolution Quarter-Trillion Gridpoint Tornadic Supercell Simulation Mesmerizes

An exceptionally high resolution simulation of a supercell thunderstorm fascinated conferees Tuesday at the AMS 100th Annual Meeting in Boston. Leigh Orf of the University of Wyoming presdented imagery and animations of the simulation that ran on the Blue Waters Supercomputer. With a 10 m grid spanning 11,200 X 11,200 X 2,000 (251 billion) grid volumes, the 270 TB subdomain contains the entire life cycle of the tornado, including 10 minutes prior to tornado formation.

Image created with VAPOR3 of a 10-m supercell simulation. (a) Volume rendered cyclonic vertical vorticiy, highlighting the 3D structure of the tornado shortly after formation.
Image created with VAPOR3 of a 10-m supercell simulation. (a) Volume rendered cyclonic vertical vorticity, highlighting the 3D structure of the tornado shortly after formation. The 2D surface field traces the maximum surface cyclonic vertical vorticity, providing a representation of the tornado’s path. The view is following the tornado’s path. (b) As in (a), but later in the simulation when the tornado exhibits a multiple vortex structure. (c) Volume rendered cloud mixing ratio, with parameters chosen to present a quasi-photorealistic view of the cloud field. The 2D surface field traces the minimum pressure found in the tornado’s path. (d)  As in (a) and (b), but a different, wider view and utilizing different opacity and color map choices. The vortex to the left, which merges with the tornado later in the simulation, is weaker than the nascent tornado as evidenced by the vortex’s more transparent and darker visual presentation and path.